#include <stddef.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <assert.h>
#include <iostream>
#include "ubixfs.h"
#include "btree.h"
using namespace std;
UbixFS::UbixFS(void) {
device = NULL;
freeBlockList = NULL;
superBlock = NULL;
root = NULL;
} // UbixFS::UbixFS
UbixFS::UbixFS(device_t * dev) {
device = dev;
freeBlockList = NULL;
superBlock = NULL;
root = NULL;
} // UbixFS::UbixFS
void
UbixFS::printSuperBlock(void) {
printf("superBlock->name............%s\n", superBlock->name);
printf("superBlock->magic1..........%X\n", superBlock->magic1);
printf("superBlock->fsByteOrder.....%d\n", superBlock->fsByteOrder);
printf("superBlock->blockSize.......%d\n", superBlock->blockSize);
printf("superBlock->blockShift......%d\n", superBlock->blockShift);
printf("superBlock->numBlocks.......%lld\n", superBlock->numBlocks);
printf("superBlock->usedBlocks......%lld\n", superBlock->usedBlocks);
printf("superBlock->batSectors......%d\n", superBlock->batSectors);
printf("superBlock->inodeCount......%d\n", superBlock->inodeCount);
printf("superBlock->magic2..........%X\n", superBlock->magic2);
printf("superBlock->blocksPerAG.....%d\n", superBlock->blocksPerAG);
printf("superBlock->AGShift.........%d\n", superBlock->AGShift);
printf("superBlock->numAGs..........%d\n", superBlock->numAGs);
printf("superBlock->lastUsedAG......%d\n", superBlock->lastUsedAG);
printf("superBlock->flags...........%X\n", superBlock->flags);
printf("superBlock->magic3..........%X\n", superBlock->magic3);
return;
} // UbixFS::printSuperBlock
int
UbixFS::vfs_init(void) {
assert(device);
cout << "vfs_init()" << endl;
assert(device);
if (device == NULL) return -1;
if (superBlock != NULL) delete superBlock;
superBlock = new diskSuperBlock;
assert(superBlock);
if (superBlock == NULL) return -1;
// read in the superBlock. It's always the last block on the partition
cout << "reading in superBlock" << endl;
device->read(device, superBlock, device->sectors-1, 1);
cout << "done" << endl;
assert(superBlock->magic1 == UBIXFS_MAGIC1);
assert(superBlock->magic2 == UBIXFS_MAGIC2);
assert(superBlock->magic3 == UBIXFS_MAGIC3);
assert(strcmp(superBlock->name, "UbixFS") == 0);
assert((1 << superBlock->blockShift) == superBlock->blockSize);
assert((1 << superBlock->AGShift) == superBlock->blocksPerAG);
assert(superBlock->flags == UBIXFS_CLEAN);
if (freeBlockList != NULL) delete [] freeBlockList;
freeBlockList = new signed char[superBlock->batSectors*512];
assert(freeBlockList);
memset(freeBlockList, 0, superBlock->batSectors*512);
device->read(device,
freeBlockList,
device->sectors - superBlock->batSectors-1,
superBlock->batSectors
); // device->read()
cout << "allocating root dir inode" << endl;
root = new ubixfsInode;
memset(root, 0, sizeof(ubixfsInode));
cout << "root dir inode starting sector: " <<
((superBlock->rootDir.AG << superBlock->AGShift)
+ superBlock->rootDir.start) * (superBlock->blockSize / 512)
<< endl;
cout << "reading in root dir" << endl;
device->read(device,
root,
((superBlock->rootDir.AG << superBlock->AGShift)
+ superBlock->rootDir.start) * (superBlock->blockSize / 512),
sizeof(ubixfsInode) / 512
);
cout << "done" << endl;
root->data.btPtr = new bTree();
cout << "reading in root dir header" << endl;
device->read(device,
root->data.btPtr->header,
((root->blocks.direct[0].AG << superBlock->AGShift)
+ root->blocks.direct[0].start)
* (superBlock->blockSize / 512),
sizeof(bTreeHeader) / 512
);
cout << "done" << endl;
root->data.btPtr->Info();
printSuperBlock();
return 0;
} // UbixFS::init
blockRun
UbixFS::getFreeBlock(blockRun ibr) {
signed char * ptr;
signed char * holdPtr;
int32 count, holdCount;
blockRun obr = {0, 0, 0};
// Check to make sure none of these are null
if (device == NULL || freeBlockList == NULL || superBlock == NULL) return obr;
if (ibr.len == 0) return obr;
if (ibr.len > superBlock->numBlocks) return obr;
if (ibr.len == 1) return getFreeBlock(ibr.AG);
/*
* count is the block from the base of the list.
* Since we're given a specific AG to look through, we start the count at
* AG << AGShift, where AGShift is the shift value of the number of blocks
* in an AG
*/
count = (ibr.AG << superBlock->AGShift);
/*
* The freeBlockList is a bit map of the free/used blocks.
* Used = on bit
* Unused = off bit
* There are 8 bits per byte (hopefully) and so we have to divide the count
* by 8 to get our starting byte offset to look from
*/
ptr = freeBlockList + (count >> 3);
rescan:
// look for the first free 8 blocks (this may create holes)
while (*ptr != 0) {
++ptr;
count += 8;
if (count+8 > superBlock->numBlocks) {
ptr = freeBlockList;
count = 0;
} // if
} // while *ptr != 0
holdPtr = ptr;
holdCount = count;
for (unsigned short i = 0; i < ((ibr.len+7) / 8); i++) {
++ptr;
count += 8;
if (count+8 > superBlock->numBlocks) {
ptr = freeBlockList;
count = 0;
goto rescan;
} // if
if (*ptr != 0) goto rescan;
} // for i
// we have found a range of blocks that work for us
obr.AG = holdCount / superBlock->blocksPerAG;
obr.start = holdCount % superBlock->blocksPerAG;
obr.len = ibr.len;
for (unsigned short i = 0; i < (ibr.len / 8); i++) {
*holdPtr = -1;
++holdPtr;
} // for
if (ibr.len % 8 != 0) *holdPtr = (-1 << (8-(ibr.len % 8)));
superBlock->usedBlocks += ibr.len; // increment the number of used blocks
return obr;
} // UbixFS::getFreeBlock
blockRun
UbixFS::getFreeBlock(uInt32 AG) {
// AG == AllocationGroup
blockRun br;
signed char * ptr;
int32 count;
int32 subCount = 128;
br.AG = 0;
br.start = 0;
br.len = 0;
// Check to make sure neither of these are null
if (device == NULL || freeBlockList == NULL || superBlock == NULL) return br;
// Are there any blocks available?
if (superBlock->numBlocks == superBlock->usedBlocks) return br;
/*
* count is the block from the base of the list.
* Since we're given a specific AG to look through, we start the count at
* AG << AGShift, where AGShift is the shift value of the number of blocks
* in an AG
*/
count = (AG << superBlock->AGShift);
/*
* The freeBlockList is a bit map of the free/used blocks.
* Used = on bit
* Unused = off bit
* There are 8 bits per byte (hopefully) and so we have to divide the count
* by 8 to get our starting byte offset to look from
*/
ptr = freeBlockList + (count >> 3);
// Scan through the freeBlockList
rescan:
while (*ptr == -1) {
++ptr;
count += 8;
if (count+8 > superBlock->numBlocks) break;
} // while *ptr == -1
subCount = 128;
do {
if ((*ptr & subCount) == 0) break;
subCount >>= 1;
++count;
if (count == superBlock->numBlocks) {
count = 0;
ptr = freeBlockList;
goto rescan;
} // if
} while(subCount > 1);
*ptr |= subCount; // mark this block as used
++superBlock->usedBlocks; // increment the number of used blocks
br.AG = count / superBlock->blocksPerAG;
br.start = count % superBlock->blocksPerAG;
br.len = 1;
return br; // return the allocated block number
} // Ubixfs::getFreeBlock
uInt32
UbixFS::getNextAG(void) {
if (superBlock->lastUsedAG == superBlock->numAGs)
superBlock->lastUsedAG = 0;
else
superBlock->lastUsedAG++;
return superBlock->lastUsedAG;
} // UbixFS::getNextAG
/*
* UbixFS::getFreeBlock(void)
* upon success returns a free block based on the next AG after the lastUsedAG
* failure returns -1
*/
blockRun
UbixFS::getFreeBlock(void) {
return getFreeBlock(getNextAG());
} // UbixFS::getFreeBlock
blockRun
UbixFS::get8FreeBlocks(uInt32 AG) {
// AG == AllocationGroup
blockRun br;
signed char * ptr;
signed char * endPtr;
int32 count;
br.AG = 0;
br.start = 0;
br.len = 0;
if (device == NULL || freeBlockList == NULL || superBlock == NULL) return br;
// Are there any blocks available?
if (superBlock->usedBlocks+8 > superBlock->numBlocks) return br;
/*
* count is the block from the base of the list.
* Since we're given a specific AG to look through, we start the count at
* AG << AGShift, where AGShift is the shift value of the number of blocks
* in an AG
*/
count = (AG << superBlock->AGShift);
ptr = freeBlockList + (count >> 3);
endPtr = freeBlockList + (superBlock->numBlocks >> 3);
bool secondTime = false;
while (*ptr != 0) {
++ptr;
count += 8;
if (ptr == endPtr) {
if (secondTime)
return br;
else
secondTime = true;
count = 0;
ptr = freeBlockList;
} // if
} // while
*ptr = -1; // mark 8 blocks as taken
br.AG = count / superBlock->blocksPerAG;
br.start = count % superBlock->blocksPerAG;
br.len = 8;
return br;
} // UbixFS::get8FreeBlocks
void *
UbixFS::mknod(const char *filename, ubixfsInode * parent) {
ubixfsInode * inode = NULL;
inode = new ubixfsInode;
assert(inode);
if (inode == NULL) return NULL;
memset(inode, 0, sizeof(ubixfsInode));
// inode->magic1 = ;
if (parent == NULL) {
inode->inodeNum = getFreeBlock();
inode->parent.iAddr.AG = 0;
inode->parent.iAddr.start = 0;
inode->parent.iAddr.len = 0;
} else {
inode->inodeNum = getFreeBlock(parent->inodeNum.AG);
inode->parent.iAddr = parent->inodeNum;
} // else
strncpy(inode->name, filename, MAX_FILENAME_LENGTH);
inode->uid = getuid();
inode->gid = getgid();
// inode->mode
// inode->flags
// inode->createTime
// inode->lastModifiedTime
// inode->type
inode->inodeSize = superBlock->inodeSize;
/*
* next and prev are used in memory to hold pointers to the next/prev
* inodes in this dir. On disk they may have another value, but for
* now they should be set to null.
*/
inode->next.offset = 0;
inode->prev.offset = 0;
++superBlock->inodeCount;
return inode;
} // UbixFS::mknod
void *
UbixFS::vfs_mknod(const char *path, mode_t mode) {
return mknod(path, 0);
} // UbixFS::mknod
void
UbixFS::printFreeBlockList(uInt32 AG) {
unsigned int j;
if (superBlock == NULL || freeBlockList == NULL) return;
printf("AG = %d\n", AG);
for (unsigned int i = 0; i < superBlock->blocksPerAG / 8; i++) {
j = 128;
signed char foo = freeBlockList[(AG << superBlock->AGShift)+i];
while (j > 0) {
if ((foo & j) == j)
printf("1");
else
printf("0");
j >>= 1;
}
} // for i
printf("\n");
return;
} // UbixFS::printFreeBlockList
int
UbixFS::vfs_format(device_t * dev) {
cout << "vfs_format()" << endl;
char sector[512];
uInt32 blocks, batSect, batSize;
if (dev == NULL) return -1;
// zero out the sector
memset(§or, 0x0, sizeof(sector));
// fill the drive in with zeroed out sectors
cout << "dev->sectors: " << dev->sectors << endl;
cout << "clearing device" << endl;
for (unsigned int i = 0; i < dev->sectors; i++) {
dev->write(dev, §or, i, 1);
} // for i
cout << "device clear" << endl;
// allocate a new superBlock and clear it
diskSuperBlock *sb = new diskSuperBlock;
if (sb == NULL) return -1;
memset(sb, 0, sizeof(diskSuperBlock));
// dev->sectors is the number of 512 byte sectors
blocks = (dev->sectors-1) / 8; // 4k blocks
batSize = (dev->sectors-1) % 8; // remainder
// compute the BAT size
while ((batSize * 4096) < blocks) {
batSize += 8;
--blocks;
} // while
// batSize is in sectors
batSect = blocks * 8;
strcpy(sb->name, "UbixFS");
sb->magic1 = UBIXFS_MAGIC1;
sb->fsByteOrder = 0;
sb->blockSize = 4096;
sb->blockShift = 12;
sb->numBlocks = blocks;
sb->usedBlocks = 2; // root dir takes two blocks (inode + bTree header)
sb->inodeCount = 1;
sb->inodeSize = 4096;
sb->magic2 = UBIXFS_MAGIC2;
sb->blocksPerAG = 2048;
sb->AGShift = 11;
sb->numAGs = (sb->numBlocks+2047) / 2048;
sb->lastUsedAG = 0;
// the BAT exists outside our official block count, so no
// entries in the BAT need to be set for it
sb->batSectors = batSize;
sb->flags = 0x434C454E; // CLEN
sb->logBlocks.AG = 0;
sb->logBlocks.start = 0;
sb->logBlocks.len = 0;
sb->logStart = 0;
sb->logEnd = 0;
sb->magic3 = UBIXFS_MAGIC3;
sb->indicies.AG = 0;
sb->indicies.start = 0;
sb->indicies.len = 0;
sb->rootDir.AG = 0;
sb->rootDir.start = 0;
sb->rootDir.len = 1;
// write out the superBlock
cout << "writing superBlock" << endl;
dev->write(dev, sb, dev->sectors-1, 1);
cout << "batSector: " << batSect << endl;
cout << "batSize: " << batSize << endl;
// mark the first two 4k blocks used
memset(§or, 0, sizeof(sector));
sector[0] = (1 << 7) | (1 << 6);
cout << endl;
// write out the first sector of the BAT
cout << "Writing BAT - 1 - " << endl;
dev->write(dev, §or, batSect, 1);
// clear the rest
sector[0] = 0;
memset(§or, 0, sizeof(sector));
// write out the rest of the BAT
cout << "Writing BAT - 2 - " << endl;
for (unsigned int i = 1; i < batSize; i++) {
dev->write(dev, §or, (batSect)+i, 1);
} // for i
cout << "Finished writing BAT" << endl;
/* allocate part of the root dir */
// sanity checks
assert(sb->blockSize);
assert((unsigned)sb->blockSize >= sizeof(bTreeHeader));
cout << "allocating bTree header" << endl;
bTreeHeader * bth = new bTreeHeader;
assert(bth);
memset(bth, 0, sizeof(bTreeHeader));
bth->firstDeleted = -1;
bth->firstNodeOffset = -1;
//bth->
/* create the root dir inode here */
cout << "creating root inode" << endl;
ubixfsInode * inode = new ubixfsInode;
assert(inode);
if (inode == NULL) return NULL;
memset(inode, 0, sizeof(ubixfsInode));
// inode->magic1 = ;
inode->inodeNum.AG = 0;
inode->inodeNum.start = 0;
inode->inodeNum.len = 1;
inode->parent.iAddr.AG = 0;
inode->parent.iAddr.start = 0;
inode->parent.iAddr.len = 0;
inode->blocks.direct[0].AG = 0;
inode->blocks.direct[0].start = 1;
inode->blocks.direct[0].len = 1;
// inode->blocks.maxDirectRange = 1;
strcpy(inode->name, "/");
inode->uid = getuid();
inode->gid = getgid();
// inode->mode
inode->flags = INODE_DIRECTORY;
// inode->createTime
// inode->lastModifiedTime
// inode->type
inode->inodeSize = sb->inodeSize;
/*
* next and prev are used in memory to hold pointers to the next/prev
* inodes in this dir. On disk they may have another value, but for
* now they should be set to null.
*/
inode->next.offset = 0;
inode->prev.offset = 0;
// write out the "root" dir inode
dev->write(dev, inode, 0, sb->inodeSize / 512);
// write out the "root" dir
dev->write(dev, bth, 1, sb->blockSize / 512);
delete inode;
free(bth);
delete sb;
cout << "format complete" << endl;
return 0;
} // UbixFS::vfs_format
int
UbixFS::vfs_stop(void) {
if (vfs_sync() != 0) return -1;
return 0;
} // UbixFS::vfs_stop
int
UbixFS::vfs_sync(void) {
if (device == NULL || superBlock == NULL || freeBlockList == NULL) return -1;
device->write(device,
freeBlockList,
device->sectors - superBlock->batSectors - 1,
superBlock->batSectors
);
device->write(device, superBlock, device->sectors-1, 1);
return 0;
} // UbixFS::vfs_sync
UbixFS::~UbixFS(void) {
delete [] freeBlockList;
return;
}