<?xml version="1.0" encoding="UTF-8" standalone="no"?> <!-- Created with Inkscape (http://www.inkscape.org/) --> <svg xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:cc="http://creativecommons.org/ns#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:svg="http://www.w3.org/2000/svg" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd" xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" width="900" height="300" version="1.1" id="svg2" sodipodi:version="0.32" inkscape:version="0.47pre1"> <sodipodi:namedview pagecolor="#ffffff" bordercolor="#666666" borderopacity="1" objecttolerance="10" gridtolerance="10" guidetolerance="10" inkscape:pageopacity="0" inkscape:pageshadow="2" inkscape:window-width="1920" inkscape:window-height="1170" id="namedview107" showgrid="false" inkscape:zoom="1" inkscape:cx="514.76695" inkscape:cy="-14.43644" inkscape:window-x="-5" inkscape:window-y="-3" inkscape:current-layer="layer1" inkscape:window-maximized="1" /> <metadata id="metadata109"> <rdf:RDF> <cc:Work rdf:about=""> <dc:format>image/svg+xml</dc:format> <dc:type rdf:resource="http://purl.org/dc/dcmitype/StillImage" /> <dc:title></dc:title> </cc:Work> </rdf:RDF> </metadata> <defs id="defs4"> <g id="hueImage"> <linearGradient id="gradient"> <stop id="stop8" stop-color="#f00" offset="0.000" /> <stop id="stop10" stop-color="#ff0" offset="0.167" /> <stop id="stop12" stop-color="#0f0" offset="0.333" /> <stop id="stop14" stop-color="#0ff" offset="0.500" /> <stop id="stop16" stop-color="#00f" offset="0.667" /> <stop id="stop18" stop-color="#f0f" offset="0.833" /> <stop id="stop20" stop-color="#f00" offset="1.000" /> </linearGradient> <rect style="fill:url(#gradient)" y="0" x="0" id="rect22" height="299" width="300" /> </g> <filter color-interpolation-filters="sRGB" width="1" height="1" y="0" x="0" id="replaceHueFromLayer"> <!-- This is mainly to make sure the flood color has the desired effect. It would be better to use "real" colors and compute the hue from them instead, and if so linearRGB might actually have an advantage. --> <!-- Set up p, q and q-p --> <feColorMatrix id="feColorMatrix25" values="1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1" type="matrix" result="r" in="SourceGraphic" /> <feColorMatrix id="feColorMatrix27" values="0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1" type="matrix" result="g" in="SourceGraphic" /> <feColorMatrix id="feColorMatrix29" values="0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1" type="matrix" result="b" in="SourceGraphic" /> <feBlend id="feBlend31" result="minrg" in2="g" in="r" mode="darken" /> <feBlend id="feBlend33" result="p" in2="b" in="minrg" mode="darken" /> <feBlend id="feBlend35" result="maxrg" in2="g" in="r" mode="lighten" /> <feBlend id="feBlend37" result="q" in2="b" in="maxrg" mode="lighten" /> <feComposite k1="0" id="feComposite39" k4="1" k3="1" k2="-1" operator="arithmetic" result="pminq" in2="p" in="q" /> <!-- p-q+1 = 1-(q-p), with the right alpha :) --> <feColorMatrix id="feColorMatrix41" values="-1 0 0 0 1 0 -1 0 0 1 0 0 -1 0 1 0 0 0 0 1" type="matrix" result="qminp" in="pminq" /> <!-- Get hq-hp and hrgb-hp --> <feImage id="feImage43" result="hueImage" xlink:href="#hueImage" /> <feColorMatrix id="feColorMatrix45" values="1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1" type="matrix" result="hrgb" in="hueImage" /> <feColorMatrix id="feColorMatrix47" values="1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1" type="matrix" result="hr" in="hueImage" /> <feColorMatrix id="feColorMatrix49" values="0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1" type="matrix" result="hg" in="hueImage" /> <feColorMatrix id="feColorMatrix51" values="0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1" type="matrix" result="hb" in="hueImage" /> <feBlend id="feBlend53" result="hminrg" in2="hg" in="hr" mode="darken" /> <feBlend id="feBlend55" result="hp" in2="hb" in="hminrg" mode="darken" /> <feBlend id="feBlend57" result="hmaxrg" in2="hg" in="hr" mode="lighten" /> <feBlend id="feBlend59" result="hq" in2="hb" in="hmaxrg" mode="lighten" /> <feComposite k1="0" id="feComposite61" k4="1" k3="1" k2="-1" operator="arithmetic" result="hpminhq" in2="hp" in="hq" /> <!-- hp-hq+1 = 1-(hq-hp), with the right alpha :) --> <feColorMatrix id="feColorMatrix63" values="-1 0 0 0 1 0 -1 0 0 1 0 0 -1 0 1 0 0 0 0 1" type="matrix" result="hqminhp" in="hpminhq" /> <feComposite k1="0" id="feComposite65" k4="1" k3="1" k2="-1" operator="arithmetic" result="hpminhrgb" in2="hp" in="hrgb" /> <!-- hp-hrgb+1 = 1-(hrgb-hp), with the right alpha :) --> <feColorMatrix id="feColorMatrix67" values="-1 0 0 0 1 0 -1 0 0 1 0 0 -1 0 1 0 0 0 0 1" type="matrix" result="hrgbminhp" in="hpminhrgb" /> <!-- Compute (hrgb-hp)/(hq-hp) --> <feComponentTransfer id="feComponentTransfer69" result="invhqminhp" in="hqminhp"> <!-- Computes (1/10)*(1/(hq-hp)) --> <feFuncR id="feFuncR71" exponent="-1" amplitude="0.1" type="gamma" /> <feFuncG id="feFuncG73" exponent="-1" amplitude="0.1" type="gamma" /> <feFuncB id="feFuncB75" exponent="-1" amplitude="0.1" type="gamma" /> </feComponentTransfer> <feComposite k4="0" k3="0" k2="0" id="feComposite77" k1="10" operator="arithmetic" result="coefs" in2="invhqminhp" in="hrgbminhp" /> <!-- 10*(hrgb-hp)*(1/10)*(1/(hq-hp)) = (hrgb-hp)/(hq-hp) --> <!-- The following uses "iterative" refinement (or at least something similar) to improve the result, but it cannot cope (well) with negative residuals. --> <feComposite k4="0" k3="0" k2="0" id="feComposite79" k1="1" operator="arithmetic" result="hrgbminhpestimate" in2="hqminhp" in="coefs" /> <!-- (hrgb-hp)/(hq-hp)*(hq-hp) = (hrgb-hp) --> <feComposite k1="0" id="feComposite81" k4="1" k3="1" k2="-1" operator="arithmetic" result="hrgbminhpresidual" in2="hrgbminhpestimate" in="hrgbminhp" /> <feColorMatrix id="feColorMatrix83" values="-1 0 0 0 1 0 -1 0 0 1 0 0 -1 0 1 0 0 0 0 1" type="matrix" result="hrgbminhpresidual" in="hrgbminhpresidual" /> <feComponentTransfer id="feComponentTransfer85" result="invhqminhp" in="hqminhp"> <!-- Computes (1/100)*(1/(hq-hp)) --> <feFuncR id="feFuncR87" exponent="-1" amplitude="0.01" type="gamma" /> <feFuncG id="feFuncG89" exponent="-1" amplitude="0.01" type="gamma" /> <feFuncB id="feFuncB91" exponent="-1" amplitude="0.01" type="gamma" /> </feComponentTransfer> <feComposite k4="0" k3="0" k2="0" id="feComposite93" k1="100" operator="arithmetic" result="coefscorrection" in2="invhqminhp" in="hrgbminhpresidual" /> <!-- 100*(hrgb-hp)*(1/100)*(1/(hq-hp)) = (hrgb-hp)/(hq-hp) --> <feComposite k4="0" k1="0" id="feComposite95" k3="1" k2="1" operator="arithmetic" result="coefs" in2="coefscorrection" in="coefs" /> <!-- Combine p and q --> <feComposite k4="0" k3="0" k2="0" id="feComposite97" k1="1" operator="arithmetic" result="qminpc" in2="coefs" in="qminp" /> <feComposite k4="0" k1="0" id="feComposite99" k3="1" k2="1" operator="arithmetic" result="color" in2="qminpc" in="p" /> <!-- This has a slight chance of failing, as alpha gets larger than 1 internally, but it really shouldn't be a problem as the specification clearly says that it operates in premultiplied mode AND the results are clamped to [0,1]. --> <!-- Reconstruct original alpha channel --> <feColorMatrix id="feColorMatrix101" values="0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0" type="matrix" result="alpha" in="SourceGraphic" /> <feComposite k4="0" k3="0" k2="0" id="feComposite103" k1="1" operator="arithmetic" in2="alpha" in="color" /> </filter> <filter color-interpolation-filters="sRGB" width="1" height="1" y="0" x="0" id="replaceHue"> <!-- This is mainly to make sure the flood color has the desired effect. It would be better to use "real" colors and compute the hue from them instead, and if so linearRGB might actually have an advantage. --> <!-- Set up p, q and q-p --> <feColorMatrix id="feColorMatrix7" values="1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 " type="matrix" result="r" in="SourceGraphic" /> <feColorMatrix id="feColorMatrix9" values="0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 " type="matrix" result="g" in="SourceGraphic" /> <feColorMatrix id="feColorMatrix11" values="0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 " type="matrix" result="b" in="SourceGraphic" /> <feBlend id="feBlend13" result="minrg" in2="g" in="r" mode="darken" /> <feBlend id="feBlend15" result="p" in2="b" in="minrg" mode="darken" /> <feBlend id="feBlend17" result="maxrg" in2="g" in="r" mode="lighten" /> <feBlend id="feBlend19" result="q" in2="b" in="maxrg" mode="lighten" /> <feComponentTransfer id="feComponentTransfer21" result="q2" in="q"> <!-- q without the red channel --> <feFuncR id="feFuncR23" slope="0" type="linear" /> </feComponentTransfer> <feBlend id="feBlend25" result="pq" in2="q2" in="p" mode="lighten" /> <!-- p in the red channel and q in the rest --> <feColorMatrix id="feColorMatrix27" values="-1 1 0 0 0 -1 1 0 0 0 -1 1 0 0 0 0 0 0 0 1 " type="matrix" result="qminp" in="pq" /> <!-- Set up coefs --> <!-- This is what determines the "target" hue. In the ideal case this would use feImage to get the image data from some other object and compute the hue from that. --> <feFlood id="feFlood29" result="hk" flood-opacity="1" flood-color="rgb(80%,80%,80%)" /> <!-- This could also use an arbitrary image whose hue has been determined. --> <feComponentTransfer id="feComponentTransfer31" result="coefsq" in="hk"> <feFuncR id="feFuncR33" tableValues="1 1 0 0 0 1 1" type="table" /> <feFuncG id="feFuncG35" tableValues="0 1 1 1 0 0 0" type="table" /> <feFuncB id="feFuncB37" tableValues="0 0 0 1 1 1 0" type="table" /> </feComponentTransfer> <!-- Combine p and q --> <feComposite k4="0" k3="0" k2="0" id="feComposite39" k1="1" operator="arithmetic" result="qminpc" in2="coefsq" in="qminp" /> <feComposite k4="0" k1="0" id="feComposite41" k3="1" k2="1" operator="arithmetic" result="color" in2="qminpc" in="p" /> <!-- This has a slight chance of failing, as alpha gets larger than 1 internally, but it really shouldn't be a problem as the specification clearly says that it operates in premultiplied mode AND the results are clamped to [0,1]. --> <!-- Reconstruct original alpha channel --> <feColorMatrix id="feColorMatrix43" values="0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 " type="matrix" result="alpha" in="SourceGraphic" /> <feComposite k4="0" k3="0" k2="0" id="feComposite45" k1="1" operator="arithmetic" in2="alpha" in="color" /> </filter> </defs> <g id="layer1" inkscape:groupmode="layer" inkscape:label="Layer 1"> <image xlink:href=" BwQTAgcFGAUMHQUNFgcZEAgkPwMWPAQjMAokVAIOLg0TIQ8wJg8iKw8bXwQHRQ4OIBcmJRcadAER fAIHdQQibwgwNx4PaxACNyEsVBknNyMjNSI6Ths2RyEzPCNMSiQqbxoljxIiNS00NitNWyUhNDAp XCcRNDFDYysEjBsyRy87RTEwQTBIOTgaVDAiTDYZSzYnjiBEgSpEqSA4YToPUDtPTTtcVkEPWD0+ SUBQUD9HUEE9SEkRczdGXz1QjTQkiTQ4O1ASRkViaD9Efzs6eUAbYkU3fkIEVko3fEAvSU1Wd0I8 qjYfdEoEpTVGSVQrTlBHqTg1bEsvb08EaFIEqTk/WE5eX1EvaExMX05VS1wHXFgEX1BLeVAkb1FD TV8eb1YbZFZDblcpXV0jglNYfldaemAUs0lVrE1CdVxVc1xdgFdrYWFrbGBWamBdW2VajF4VbF1+ nFoRnFJhe15PgGQFq1BTcmJPa2ZPdGsFcmoZmls4lVpSdWJumVxIZ3AZdWhEW2mHjGBUl2YBimNH kGkAkGU3ZHBMiG0Ag2o3c281aHMzfXMAk2NnWXKKjWZoim4kXnN9gWtrhGtkiWtccHB5e29kf29c a3Rqd3JbeXBstHECuG0frnIgrnYAumlrpnwAjoEapHogmX4dr3RDZ4KXgYcdnndyiH19hH91lYYA j3x1iH9toIMAiYoBiYBmk31vln1oeIV4qH07hICIhYdAsndgeYSIm4I6fYSAmIJKr3hxqH5Mo3qH kYZdhIeftooFroJxsoJmp4ZkroaAo4x+iJKWi5KOjJOFuY41nJB3oY2GlI+ZmpB+p413mo+Pl5GH tJcOrpY2x5oTxZOCxZZ5u5eRs5qRrJulnKCwuZyGvpx5r56WmKSirqCOqKGWrqGHpqGgwp9oo6Ko xaFbyawjs6qBqa+fy6uFxKqkv6uwuq+dubGVsLG8uLGms7Kzz7RYq7az3bNg2bdzxMC4vcPJvMW7 zcWs08iayc+vzNTY0dbN4+jh7u3OwPYOzwAAAAlwSFlzAAAN1wAADdcBQiibeAAAIABJREFUeNpM /Atc0nf7Bo5/rFxPB81DrcdDamk9LjXXyUKx1tI505+uZSlOxjLTkgH5LJV0WuahqbkOKJD8f2se nhL84CNMkszmPIQaZy3ToQFqZQbCU6GurNfv/tC+r9f/jSCSk8vruu7rvm+KIeNqEYORz2IxmhV6 o2VhwWKZs8B5Ma4bf2kxm/unxrncl+ZJs3kErrPwyJtZ85x57sWI+Y0hmSySy+W9cnkffPpDLldZ 74nkvXB/RK4ymfVjOsu7hXfvFhYWTl376adT1347dSoq+ODC2xmzxcwViUXmcZXaPDVlNpsm6aTR 6O0H5k37tu8LP4C8MFtMFpNpbm7OYgA479/NzcOnuXmvwBVut2+3JXI4IpWc+Sdg+h4wWebgWWZn LbNm87hljtsr7gNQAATDNgnX3l75n6pe7CuVfN6gGxvTmh4tYOeNwdH7lPWE+B5cWJiZm60Ui3tF ZrP5pdmsejkz0pcfody+fb1leF94+L4DiMU0Pwdgv79s1AJP85fhK4wti3R00SK3BJxZns/kMswm +O/zZ2fNM4BsZHZ29u3szIx5bo4rkovlvflqmQoOgFHJJ+Uf+JtUvTAaH2nHjGOmhQ/HJfjUQUAW FbUpyjI3DjqIe3t7MebNMyOiKfNkH084t1xp2nNgPSl8DcBCWdPzJhQ1AZaFefS5aRpUNC/4+69Y sXXrT3jc47lxMYAyj+dbZswLptk5YMo8MgeCgpbjcjFQteeAqysR5UjUGHVwJv+YVKmmTcN6A7Bl 0r77GxePRvP22RQVFbXw9q1ZMDsn/0P0cnbOPAMqiGbk8n6z6eXMowMnT57cvg+xvMjfO22xpMpA QtPctOb93DRoOj/n4rcMWbsWF98RlMzMn8Rw5Ztn5kwvZmdfTGLEj5tfmKwKmNQL0eHLo/dEu7q2 jkzKR0b+HBkBk5kMJpPMaDRrp416cOz8guV7icJ7ZcCpkIPB8rn8l1TaJOZIMAQoMCs3M2Xwo8yz c3uWZmfvw2B5eIC59sruYb+9xTA9bzFNWSzzhwoObSTgCzik+A6metyks5i+H7PMQRUAWRZAk6/G GBx/qRuRczn5QezwAxuj2z/A+nNc3ms2TZumAdnY2LTRdHlh4cX8C5NMzfe2dfH1poxwzWQuXiQS ExPV85bZl7MzZp2ZgckJKC3r14eHI3M6y4sxsL3BBKDmxsD/ZhOoOL+VzfDy2lqQSKIWMI3mF2bd u4X3KhAaPAUkmV6aLVMYhZOTOo56XC7nMsGD7yaBJtWkfLxXbjCatGMGk2FaqzPpQIgXUEgynuIg jnvKjmqZm+0Xc0Si3kicF51sxhw7NzmHlfnMzOzI5NjyQOQF+M8yNjJtmje9mQP5NPCzxk2mN2Gq Nk5ygr+Ykgg/1Gx+MbKx/R3HAPcwtsCoJoBqHp95aTLrTBj9Ivgjs2lEDmSBNhqL6Z7RYBoDdIYR k9EASkD08KQUP5Tjhps17xWJoRDbQvzCKgVmcCvAUVlemOWiP2dnekUiGTJrScx/Y7LQ3hwHKkwm BVem9zCNqcbH1W3MrU6Im12QPkxn6J0c2XhWB2hGmCNv3717hxGFWX8SaMNAvRjnYA+9fDH9fuTP SRG4YmzMZDJrDYbpKZ3BaDZClcOvwqO5NP+2TG0eF4n3Tprl4nQiQc+YgdqflcuB/xkwvkjHZKpk iGXOpJufs3z/fo8FkzKMk8+YMo/oRGP573RG1goHVy8vQhghzItF6lIDIbrjpD3ReXlz5pcW0+Sk HIOGPSFmuhfz76cfDTXAoyrDI5NBrx8DUFqTwaCbNhl+t5bjHjdHCcGO95IhEjHNk2LxGb9kvUTU 1/vHS4jjkclZM0Bi9FPUXMRkuizTWyzoex7klUmWH0aeIu+Vz06q8lHdyLiay98YSEonEUgEOuGM fzJHdTw67Gxr1wtrK7DIQc8pwDUy/f69RtnVrRnt6hrp7TMZJGNG2TOjVm98AwAN4DKLakQ2ZmYm BrFdVjJQpki8ggM6kogkgeyPP8QiCZMi16nmzHImN98sAlgWCEuZ2fL9m3UghUqn0zEYiUBlvipx hCsScds4+fkRuPSIZEJmIJGQToiIjgaydBApL02TOrVp7uXI/DtLl/Uou7o0PV26d+9+/2NMN67V amWyYaPMgOWEdjifwENN+Y52NP8wQlsbk+IP0JggQ5VOTolX7R1hithzM7NmlY4z83Jch4z/xmGi IN+wTK/jTXK5vPx8hlqm5jDzVSqZiseVq5h7IyLCgK0ILwKBEEiKjj4brX0DPoMkfPTm/fTDrr9P 95CmS9OuzKcRGDKZ9pFBpx02gIbge/3wsAxFeSjB8rMdy3ZZYjzzsWgvQGMSyGTlyGQfU+jxUi5W j0NJzpqm5lQyGcITtfH6RWqdTitr2K6BtvrirWlSpW7j+KlR6Ci6cRUPF0EKI0QTvQgkEinwQDjp QHhyWISHq+zRvYfdo92gXU9X12jrkGbo+ehzjYacni8xyUzDOgO4Hq3UToPltQo1H2XzOGqT5cXl ZX7xOC83PKVXnk8ikfuhUER71829zdeZvv9eh15mK4VCJdIH8aECk2J9/t27t5gzLS9UIi63jWuZ EsGfMjltvF5mWCBpIzUwgeQKIh44EBYBZgvrxigahdvW7i7NQ/3DIeUzzdBQ4t69MiWW8VNgKhZ5 WGfUGoZlMpSDoijbYpkdXxni7+VPpLr4exHpBKJKPju3MAcMcdUoA76btXdcP2UCWH0q+fjIO+tZ wKBZLDpVW1ubSmSZ402qJsf7IcE4bfnEMDouIjAien30geiIiGQSKbqrW/mwa7T7YZdm6JlG3zU0 JHymeTj0MYEg0QieP3+uGR3SogKjXqscHpNxebw2PoOXbjKJ1BocHu9/ZisO55/OolGYI2qubvz7 Eex7VEYeiho1HgZEN6WbhLy2YrKeWcuCZZzb1y/mQR6oVKI+eS94jcflwGEyww78C+giJBOScaSu ntHRrqGHGrDUkOs6JUg4r3mo2YxLl2ofASz4s+fNEsNYpU4i06EslMtmMzgmE5drMuIDcX7cvbOz Y1SSHy5MKBgfl1kYPA6NIyAzpt7d85AhMAVA613Z+2fvDIZrlgvDgRm4ahOJFuZ03BG5B5un6u1V q/qYUJbXKG2gYTQughBNInWNDvWMdg8FhhlHn/81r3n+/NHCfFfhvj0Epc7wfOj586HuLmGDUa+T STlqXj6Lzc5ncSqnDfnqKYPRy58nIKsN6bhkLdoAdTtiSb3XfpzB4KE8I4QxYraewEA7dxh/xs3j XOhrIq6qjSsHEc19KnWiVzR4TzQ+rlOpuOPj48BZfr9anY9zHR3VvHukefjXe0D0YgE065r9a6j1 9HYvvRHYGn0+2lPFv2wYU2slCh6DxWLT2exKvsqSz50Du/F0KlQx73V5bmFENj4+qbJ0PWwPT6Wg HJ7W8mYeMc/CSGxaHrbRdd2hQnV/n1rFG5f3YVOdfGEBxpdJk6lwalymGlfpVH35fTA5qHk8HkBT vxl6rnkHFlrnCrBkJqXm4bCRoXyU13BaKzM9x1QcvcsQzGuhxiUqLicxnUVdYPPZJpNlzKDL56Iy rXYenPPWPCnTjastyocP70VDuLGeGU3zSLyH+5xpyivMdSPuwFmJWrRuXKeTySBWtTDNy2Qqy/j7 PJ1Z9VglV/dNjc/N6VTwOMSGCp1+bvwrBJ69ah24e364UDOtVBmHz+ad/lmiHpp4Pjr0fOIuQTIP OaFVQ2yxyCjPMsbOJ+t0MLGYVahOppkHVG/N8Ixj4xDJD9u7olMFldBz5hEc0dbGzjEwLMzBNXqP QqKWQh1LNFr4XpO1MH8//g/Nixls5MNWATXWmqew9vf+Uevzh/NE4MRVDz0n39Qw3d7113DDz+0a o3FfNCYi0NXQI9HLZAoFaEgmkwXoO3LDm7cLC2/BH6hKbbRghWaeHIcxBGC1d3XdK6ziKQ0LAMuV bvuRj21VJonerJVAy4dRRG9A3y9MRx8vzMsrzNueLB2bxbr0jNWFlvdw5rsgFlpHR58njz58vnT9 o6Fu489YUDwHn/2cnZ19goBZHtPx8ryWIZXxQBsyA0X5XIjGtzAzwww/KRNNG7G0nH1p0pnGFtox WMquPWrGizEFwiJX7qL47N+oBThGrFcYTXCjiy4sPJuXd5qwNPoAnZMP6fx/iN5Pt997mN36EFL0 oeY5UaN5aNTCb9n189C8xrANBsufw0+fzl4TNjphxTWkRyFK1fm0xHw+j9FcCTDegnILMMCPq+et Af5uwTwybvr9XjvWwe51cbnDJhMCw1r8Vd+rGzVjWr1Bi4GbNgJlhYV7PaApey2LDqeDxXmPrJB+ Pd1+796v2GltHeoeGtLMNwy1apTK9vbC6I8/Tl2/b1teeHver2uyY/dOTDzvBlgTz3tQLspgcVgM AZ/HFzAAkhXXwuwk14RiqN5h7pqXye69a9jD43JZTOAFgS6Rz6yuZuu1oB2MIoZpyzxMu3lnvQIL w/ME0qroZA6Hx2tQdq+Znn4BmLIB1L3sIw1YPxyS9ABtmqGuVevz9u2Lzmu919r+656PPz59env0 6NCPd1t7wGSolM/jUFEeG0Tksz6ICB1udnbEyHj3ga45mUmlqlS/E6QTvfaqdVotYjAMEwQKLYAy GfXgd6nWaGmAUMjTG41n86ILwzeSyCwGD/rexlXT2b8++rU9+2Rsd/dnlx/C6AAGu/twaKirK/ps XldeQytX2J137/Tx5cdPxu59PtTa3d3dCpVKxlCBs1jsqqp0FBsHMdcDNotOhvWVt28tIzoug4++ XeBxyCwiwUuCSI06iQnUgxHXIIMJSSAVSKXTpp9b86rA8NFVYQciyBwup721deOq9Seztx/oIPW0 NnQfkUIzHOp+CCE62v6wu7tnT3FV1543hZe7Tp/O2/7zvtPbRycm/hne+gUUZCUjv5nOZ/HZzc0s NsOKCmNsBoRUqbB7b2ffvuDxYfTh/s5CeWQOYwyRmsag/GCO1BplMIvoFBB+MoMxr7hQX3j2gIfb 8fUkBoeBwYo+EN5cVdyq/+tZV/vZPKNmCOw+hF2G2oe6vUKqen7+XqmU/H46+9f1p09k7wsbHe0+ dPcL8JeQxeLzeDDXcBgstBLcNWtFNmOxvJ3E6Hq7MPsW7MtV8xhkHj8fDZPpkB4jLCYwbxu0KBkc r4PRzaCzWH7O83CR5eX54y+7htHgV2jt6j5wdpVr19ni0fVdzw3D995ruiSjz2HI0jh49bS26gWZ VTIduaq99fSvHxO2Q0iA6Sf+0/MtwFImMjg86NOVoBM7n22xEoSRBjmhUr2bfWuZTGfw1GqUw81H 0csMnn4Y2as2mXRGo0HH57MN0zqtYcw0NmwxFRauC1FHF+LwDFccVkZd3a2tZ6NdlVUajWb6r0dd zmHKoaHWUVdQsuev9vZ/HDeil6tcU6Xt7d9nb4/es+1k9rYDEKdQjHoJ0MTitKlZPBaAY7MqP2Ay z7w1g+1lU8BcJTwD1qYZvHwU7hoMiN4EQAwGaFQyiRaLrBfTU/AptdDPQ3egmNR8eWMgjc3BLH9A mPeXpvuvv9qr8gp79h0fxZgKg7kvVdfenddxXFBVdXxdV0/ex9tPbwxfk33iBJj++USDQKJkkel0 qocdh8GuquSw6WdUGFFzsNi/nZ01j6jeLXDYHBaUKYsHUxlQxpp+AQGh15lAQ+AMVnMtLPpgfonk eLR2ihEdvSc6kBGRT+Zwurqjo12X7hUeL+wZlbZ2tf/zeHv3w26Nx9DDh3vCurq7j0crW2GIUXd3 LU8vdMjcvCY7++PwHkazEn5hdiW9mrxsGa+aw2LhaJns6oXZ2bldUx75l2HXnOTxGBwgkiUAq/PY HBgheEYLBIReN6bVzWMvcpnG7kF/N02bVIafMxdvwnu8KQybGTHTqCxOV1dxcSFboyzMG1UaC7u6 ndtbu9vBNqOjD4svQ5OVhiu7lA1dDdM/LieHbydvwzoQqlAqLYb5YnI68IVbxkqvZtHs3diVLPXs 3GzYCnuPaGeJ2dxH5sAgxmBU81gM8B/K5nAMC4hB1qwja8H1gA3kNMHyD3uA7nK0A8n1wLvM+Hyz mcbicJStrYVnowsbWruqCqM3Ll23vqtrqOvhs7Duoe6NG9tbR//6q+ueMo9xOXp4+d7w7Njsj9cX ohyFab543liMEsiV5OqPT2///R5jmRu/mk1+Oze7i04naMZmZ+YY/HRgkQoXDsrj8Bh8BsPwDjFp eVqO1ITFlkEvs0xZX6N8YRkXexSymXPBPOacmUFjMBpaW/NawwsvR693Di8OP3JgjeY/XcohTSJ0 oHnDo+6H8z+nkgqdCwvzTmbvy84+TUKlw2NzhvCx4nlD2c+Z6fTM5FT2xuXrw7f/3sBoYFfOWtaR aXSDgfOYyeHwq6vTM8ksNsrnwQfgMr5DDDqJjqNO1RqgOep0pjnoydMW3f7zl87v11+L5zDjmTNm shq9111YRVoVvmfPZ9mb8yA0t3MeQhGO/tX1cKhLOdpVdXzfvjBSduzZBuPPeZcZEqVRqx3WdkUD W4aey4TkdCKEFqMqPTN66fLft58+PbKw3JWQatR7sKCFcIAkVjqZCuYSpKNgMx3GlsLI4zOU0A11 BtmYac5k6r10/vzVS5cuXWUyr3Gioh7PTL5hCbpbwz9btS+vWKjMG73X3v0Zd0hzb7Th+dBDkLGn cL3zvuxwmEwKC0+gVajROGw0uE4rusL1xW8M+p+JVCLRnliJklMZKJt1ObXrr+kdG1aFpUuG6Xwq g4xy2Cj4JJ2B0hjNLFSBiQh9B4ZHPTQg2ZhWAdUov7H/0tWrGKxL8RQKk3IwfiR/QSXo7j4bLjU+ Kyzsafirq7ArGn1ouDfaPTo01I2ti3l5rT2FDcfJDeG/GO9pDbKNRjTVYGyIvjc6bTCi5HQq0Y6c Cg5jp6MQUNOG4a93bFhKMGioMH9DG2SR+WReOoOTz2Nx0lm8d5iIijHtlE4Cs9aYSa3V3Tj/76uX rvoAX+fPR50HWIAtSK5Cu7vzihv+etZd2Jr5l0Cg2RPdPa8ZwqYb7KWHruLCvYV5hc7GidFRHZqq p6cb0cwx08frT//aNX0azq8hdmBQxnFGZT6vsnJ++tGRIztWL5+eJlfSCZDW1WSsMUFLZ1HZHD4H gzUlgRqUSfWy4bEx1aUb54El8XnPqzcuXaLsj4LNMD4qKn5uBsXmAZnxmQAtFuoLM7UN7Q/nQT/M WkPtXdn79lXtezKqeaQVTqBnUg10kqEhfcyAMkgO2du3n3Z2/ifDg0cmo6mMKjKjErrJo9NHYr9e s2F1HpppdRVK5LFZrGoOn3qGTeKQ3yFTWoUMfAXO0usuXcWYuuQZf+nG/huXrp7fv59JoZyKioqa MaPdXWcPSJVd+ujiQmkVWD66ax5WV/B91x7Svm2fva78uapStu4/dycUrMsGOl0Lq8JyEoPBFgg1 Sr1G47YsNX2Ns/P6VNj5GfPT7dnbTpzIPnkim0zmkKlUKi9ZUclKrwRoHA6dBbBgftAaGXq1TnQD czqc8/t9boCKAOs8pe381f3B8ZSXI8x/V0Wvz3wmLS4U3jNWtv/VPg8D/dDzsJPZ2a2a109cw6TK lp4ej4mJ/2nJbKlAoB9WOKxJZVxmSfUSveTevewdm48c2bBh9SpyKko2WNpPbF5z4uRJgMZKp+ZD cyOhGFnNrGohg8rikRGtdkwhWKdmQCJgkC5hyUC7dGn/JUB56dqNqzfAYlEq8Y3zN/YzjQ2Cwqqz XcPk4+8bJAJNXnb29z++enWA9PpJyxfSwZaeFumTiR4tv1mrl4wZHT52dkbRSg0q0T/SK09sOBK7 YYPzBuc1DCHDMH869siaEwDqxIk8KIdkMBiPnp6cST+D9XI4yLBCxldsAm4A1t+X85xLl3wu3bjB vMFlwqercP3zhvVcFhRmotGFe8L2HdFLZPt++B/h1etXecWv//ckT/qkZRT21ScTMK7JwK4O69eD aIIwaUOXViMZ3nAi9siJDV+vBr4qLxtMJ07scMg2Zp8EHdMJLCoZQLEIDA6HQyNT6dAZEa1CKv4D EwyDxTx/6d/nL+33AdufvxR+No9wCUizAvrjBtTAeUa089Ll4Z99VtiwBx0Tvn71WvL61avRqtcT T85qntwXtt6JPjAhUUqGtWNLw9asWbPP2dlVIhNItMPK7A2xmzfv2LBj9WrQ0Qiwjqx6OG+l6ySZ TWbxOZVsMpkKy2QlDdIVRXQ3QCaIzkvWpLpxFQvSq5iCywSp0Xv+uHrj7wMPXVpPyvtMU+gcCPvk 8UqNYPTV/ypfv35V/NerVy0Typboyn/WFR/4TKEfE+CWOzs7r3Fes8N5DexFAFOzY/OG5R9v2Lzh 6x2bVzsf0ZwGPDtOHGnPPpF9JDWZSiUto4N0ZGoylc5iVLHZCOYmiE/4uIG5CeMJAMB91x9/bD8L lsJoumG9nGcfp2k5hQeURkZDVcOYZOjV6+OvXr16P/rkyd3wNQcORG+O7im+i+LpvOXteXnt7e3r Y3fESoYlyl/bT//e/uvq5YbVRzYcAeevyv7A08nY1RuANyohEueWmJxeTSUT6VR6PoQ+AvTAMwMo jCfM2Bg1GH8ehdln83h/3OjFYJ4HoOcvCU0yCY8dTheQJev2GISvX79+D0y9evXkifMXP27+7EIh W9/Sg/qtCsOYArrWwNR14t6jn9c7rwb2dmz49ciGk9mxJ2I3A65tGLAjq1dnnzySRyCFeRAjSJD3 HDaVlslqJiPwpH+KMVtfspL0f5JdveFxNu/sjwLZyz/OY/a6dOPPP8WoKl+tZR2oaqarBV2Sqiev n7x69fr1kycT938U6vXRPRp2T3EzzyE2NjZML5NopBis7Ngq5WWlTK98GLv6xIbYDZBWJzcAX9uc oQX8fvp3wJZNIHgsJdLIfHo6h0iDnKdykPPnz4uxOryEQbmB2eoGRtql8x4//ni2VapAH4PfH/f2 6/rVaplOpUtlr/9LrxaEpaJVwNZrYGri9fOWH1CB/m5PT0Mz7BBL9yxfdVyr1wj19+7d+70duzHA QHjvyIbVJ4Gt7F9BxjWbs52dP16z2nn1kfZH2dnkdA6BRCezqDgykcAh01jIfqvTb3ywEIYHLtB5 zt/wPNB6Nk893vvnDADSqdX9PL5aN6Ue1wneKHiZDJ5A0P3qyavXTyYaLj9v+UUo7GnIJLvQL/Tw nJevco5WyhSXhUJZs1SpVwqllXplVTh46eTJI1i4bz65Y/kJ5/UaiQTV9szfyz59HOUyyenE9GTW GRqxmpbOQhAbLEUxkm6Ib/xt7RuQ7UwK888ZsxooUisAlLpf6yftV6m1at34iBq6/OVUafer112w dQmkz1s2KgWMfx1KPlRWnO78T/BRtFIqEFYp7ul+16JKIUkiBAgN/zwJgh3J/hW42rH8pIPrM1TS oNeM/PrridMMAYebTCYySOQzBHoYjYE4LEZ8IN+tFfeh6M6L+9U6QKBSqxXAk07dBsNHm4hLkMBX MvhaPT6u3qdRyiZev9478erJz5eftezcmkA/dmDztm2bN4PXAZYQFSq1VYwG59gq4T2lRNsgUKKX nU9kb/750fbT7audV51c7aqUSNQCWClPb7+MvZ5LpaefoRPPEGlEMhHxWuG0yPb8h8HhRm8fJphK rWjTqrX9QE0/n8tsY2IvMvM4OEkb7JhAF7A3rtMZBBOvXqdOTDz5nvHsPxcKir8twwOobVZUznuE UikqaUahHDcrBWxllVIoZKTuyT6yYU+VVKrnrF7lHLvnkVI51rAnPLqSISNQOWQ+h0zEleOpeACI rN26AkEQW6z33bjkuXcKQzUGoqmn1P0iZhu30DmEI277DebaRAWHp1Zp1ePAoPVVzK4nr6tGJyYa jJqWljJCkN+y5XCcV0MYrAmXCnjSe1WrsFDd0CBsqFRKhJJ09okjDoxh7TB6b82q5dl7xhouZ95j CAQyLZrOSSUT0yNwhGOZRCqVQEQckEhkCeK22Aea4iWxJ4Ib0+nGMVgqNY/LjKfwRap+zGF79+gF WqOWwcb+ukonn/zzT1HXkwk2RGnLnTupzI884r8gYaiguiClNjIksstrVmHErVkTqxQK0Kr1aGbm 8hP/ZGi0yuFKZ+fwNQTZcQYKY56+QYJWn0lNp6an03EJ6XQWu5qFqNUuTvbIiq1uUJOU8/u32i4h 6DD/qNXgKCZcTlGYXM54IKrXaGGE1Wt5f17i0uQKjoI38WRiXnP/CUHsuXKl1zpvFxfn2M3Q+QDK 9j1oZkNs7Nf7nD+EqlKi1Gw7smNb7I4Nqdrh4WHnzfvC2PmZEtQoY3zPMOrJZBqeSCdSyYQyOoEA 8xfydtbCXLx4hX+ym9NHl86vxOPcEFtgCnTCcPF4vH41h/k94ZlWoVEOS7RGnY7npWJq+B1cdHTi 7sTltviV7ntbDhG24j091mzbvM0Ka/l6AnnVx7GxH6L+4zWx97okR3YcOblj9bYwiVb5u3P08qW8 vYwGXCYqYcge6QiJdAI1ksxJJxLIBCKNRkNmFxYW5rwW46mR/ms/2uWI88fh19rgdFjNqblclUqN 9qfjpTKjvkqrUUoM+rF5PS5M3dGRqeJP9OSfX+no6ecV4u2SGImz8whfv2b9ZmuTXpW6ahVu1eYj JzcDLOc1H+/DBvrt27fv+XjNo4ZHEqlGtmZ4nZZwKIwhE6CaVAKRcJxAOkPg0AkQXmQ2HeHMzVgW FtSBOFo1zs3JHWeH98dHOi4m6MatSqpVYTQ+TaCVSmCyHgMRpQIJX9pM4hMkrPiVKz0Ptfh5+eM9 3ZMPkTqqipev+mCn9ZWrnFctX7UndjOw9fHHAK1KWFWJCvnCZqmwgJ2XffrIEeiN0MmzY+Fe7JGT sUf24DKJDHJqJCEznUpG+pn5phcLbxcIZAaJisMT8JFutEg8fvExCkJzAAAgAElEQVTiRB6NRqUx kiOesSRCQQeq11cq2Jk8CSoF40uF95555F/xD/RtcU+IiHAndrF7YFv8bDPk1mbnsOOACjhL/Ocq q4ZwZaMKvUBRJb0nUSoLTgKi2JOxsScAElxO7jjyNXzFTk9lsziREVR6JBFh8nmJjLlZ0JJMiCAS qfjIyMgILzx+K0JN1yuf6ZWZ0ma9XlAoUepQxQqtEtVrtbCTPNMYcXeD7fEB39oWeK3wCkQKhMpo V8xan62qOv5P59UYHOhC2CfAlcnmC5olWgVDoIcB7G+KYr+GKQdgfX3ESheBUElIJxBJDLwbGRkh 99PaKObZuZmFESqNSPAmEomR9tRIIt6p6ll15TNNcyYPFWoipOwqusdevURRqddqtGNjGuHe4ig8 zveK7aeIA26xDYIstd+Yt23bhlWMj61zDeap/zsEIdrQrJAppdoqo2ZYmA1kHbGiAh3hFnDBSSeQ E6npgbhkQjUZ+b6ZmajmLLx993Z2do4WQiCEJBNxkZsicfjkQimPU6UnsQSXG4SBlUtxUzqODjUY jI+M/HVBtMSVdiu9Ix2vZHwZY+tlu8hlyRK3FeiqNasyV1nLb/2a1VZc2FXwDOVkCirZzc2ZUqGw oSrbCgOYOgnXEyf/JowEuAgsAp1OJRIQESrKj6fNYa9JL5jNkzgcMZlIOOONw7sRMzU8dnNVsxRF ZcOHpDhSqkrOUejJHkRKiJ2Hi4ud0zJbu+SWCxkZy2ydkE1OK5YsZfxzFRvm5c0bQDgrOOtNs0Ao gxkNrYTxkU8SKKtOYpCsULBzIvbrr3fAXQIOZhvyXtiAmhMRHvexnMOcs74mvTA7O9OLs/dPTj6Y EBmCL1QqaJkyCSqBBhnBT7b/B423LCjEHW8PkJY5+h20t3dZtszRYy2ChBxc5LQCsfXaGLEUe7rN R6wxah3n16zpqBKmK6ua+QKpIFPKFwrZ6bHYN30NAoKlrBpa2UsNYeCo6cQQIv4ADaHJ56wv3ltf wLdSluhPI25KxuMPpmoUCpJWgo49yw+xC9nkgrA3uhE4HiEu9i5Ojo6Aycne0c7Jzsnbzc7e2w1Z ZOv9r/Ue8BQbNq/5/zvhGB6IlUo2n13dzNbypM3bMKaysSrEjA+4dmCfoxOJBCqZSqSGuKQjIy8+ YAJA716quJUy8zpi8iY3fzwRL5QI9FryUv9mDx7Oa+USO/+DibhEew//EEcA5uXitNI/xH6lk53f SlubJTZO3o52fku2EVydV61atTn2623btleGhWOJVQ0TIyog8arpPzWz6TBZVEJb2nESQ7LjyJHN Vi0xEfflh9FoibT0ZDqRiMz9/nLmxczbmXFVKqmqsKpYx4zEEd3cbPyIOLKfC+7MErslfrYRXl4u 9v7L/D3s7Vzcndzc7J2cltjZOa60s19pix2YQRAbWxec68d7cf9ctXyJ6oAgLL2ax853dj4kUDSn VzVXS9BmOptdoOgQNLMxu38da3X6jg1rTmDBBTGWXUngkKjkRAIbYOmw1+xTM6uqqgq7CruLi41u /v54HIeJx/u7ONp6uzg6uS1Z5uLm7ebiZucGLHpZxbOzt1sG+tk5bvK2tYVwgBsbpPzZpkAGdVW0 tDJMquCwFXwWZ01EoQAlS9IJDWx2cyadRacLq4TszR/kA642bN585MQRsPzXX8eeJLFYlQwY5TkE GkJKZXcLq4qLLxRbTw9UA49FY5DT/fD+NlH2tnZudnZOTnb2TsscHe3c7Je5rXBzdLR1tANYANDW ztbdxmaZLeJoiySsWAz47Kj6Q1R2s4BPpVVz+Aw+n82RCGRStl7IJyUTIujNLKnwQwVisFZtsAYr UHfiSGx1KpnHYHMi8pkcpLCQhKHRY5gy01MFAhY7k1AtVXOT7Yk2Nt5RAMnxg7Xt7ezsXNzsXdwd 7UNwiX7geUcMGwUBumzA8EgmpiXOjdPMIxKquXw2n1/JR8mBUr7Gi0QiaAUCakREoFIgFIDFd8RC JcZuW+VgkEwfb8BS4shJHiOfz2JdbmaTWEhVVXHhkuJigEVqplc38HFUHkch6+dx8GcOui11snH0 RRy9neyX2NsDYUCeo523o7sL8RSOaGtnt9LOyd7WxhYzlk3CMQC1CIl0IzTzBJCbEjorvZnGRllV qD5QGFGpZDdLIwIPNYP7IbcAFhhq8yqHn10f/UOCdceTsZdRlJHPYKEctBkp7inMXEEkLA2LSKdX MprDOGqUw1Tw1OgKhOi3FCZ9G28nWycQzc4eXYYRBsfN3i7Ej0hMDIGHHW0Wg61sFq9FPIAzBPFy SedII8jNPDZfyuBn8s6wm1E9+RmLrtBnZtIjSGx+89ZsTDcsrTY7L9/j+r3rFAgJBSnhMFAWp4rB YTGQYi+oyEj4jwl0N7afy9RLFU/NQWHnsVtMxW/c6uBgv3hRlK0jGCvfNA6wHEE6u35vJ7uDiUEH ExMdP3CFICsKbBYhANDf7QykAJvBaj4jYCvYzyCq6JrqZ0Q2KhRmRpCaISAOWTPLOj1sXr4ns13w 1xGrwxpkPC4D5fC5KA8hFS8WsNMj8CyaF5GWyKH0zr5Uw0DM49kuPnhwKf5TB4elS2xsoiAF/E20 ZbaOK23hhmljG2RnuxKOVTg4gYE2GFcI4u9dzRZKq9VzfH5zs5RPJ6RmCvRsQ7pCyhY00wsKSAXp EQBh24YNq63biHWtPLAv/PTpwoZ7LFTGYwkYKBcpLF7iT6Sx6OprnJC9ib2UoF75y3xUzZMucYvE OxBXuHptdPByRHztFwNTy+wW29va2jnZfhRi2+sL4kIw2H6AswyUXATO93AjZPLSFeNtOgIAq7RP ZnsptNi/+GBnSprT6R1seqbX+vXO2JK0fOPGdYSIdGpycmYl1TW60gunG5ahMKpzeci3JLe1uDBg J/FaCJ4XJRYze8VzPDWX4+cWgvvHprWBDncOLnVYCoQ5brKztYVscPzIEUhatAvCyg5kswE0NoF0 K2cYW/hqIY+uE7X19ikYUtwy+5BkxQopIV1I1Q9DEVRL2ZkFdBKAA0DpQF86T60h85sv01exIiOS 1ybKZKiAiyKHolcgLEE0JzERj0+ELYeZSKH8MZfPR528CoiBuE8dcGXJfiRXByfEJgrIWWwL2tna LAKObFeCscBPcIGGuAj5W8RIPpvF728T9/b1tnGI/iEHvfGZRgEVuqFWoqRXgdUyC5olCgkd9i86 m0UcQ7V6qAVOdPXWrZFe/v4MAQoiZh6yt+UxI2HbwOMpV68ymcAWpVe8V81sptqvWIQ4uN5BqAUb jzn8w87GMXixo52j7UoQDzj7yKogFu+LETzmdsC1aNHWRB5B97jvtzYV4BKJ/ez9/YmsBkE6XaJu lnbcKujo6DiTUrA7t1zQQc+EAYylpLPOoFAcqahXhNfWrVuHZSpUhhwqXuFGhL2fgA8RX71KaRO3 ia+KF68UMVleZHDzsTKHsiXEAocy/6UOKxYtsvGGPPgIEH30AZD1YrM1AUP1N11ubFZfW19vv7gP 6GK6RHok4qUCBalSwkaTy8tvdpSXp5y7lXDuUyntDCn5DCFTq1cUXKRXpwulLA6BiHNrmNbpVEhZ uf+SgyFENz9i4kEK86pYLI5nUpbgKL+JtXSvKmo6gVBmSyxfXs7Bd2x0WGGz6BTU5EobW1uwvjXe AU+CFY7N37d0Nr1PpFL1ysW9vWJmiB0Oj4ctNawSTHVRm1Jefqw8iT5lniq/2FFdzaYWJF82JieU l7PpVcKUn5TYXwvL0LFEpDh6hQ1MLN5U/NVTFAqgEgM2BBdACRKL9DQyKkFR+4MFGzs29d+BrICw 2HTQFmvMtiGnrExhNCVjeKzEQS1K+X1t/b0fTh/FDVorXi2dS6iWVm9JSUlIKVC8tb4dYGYq4kxK QkH5T2HG5JTylJ/KO5q/++6rFAUqkml5RCTz1grECR/iz6bAEbe1tV29RmEigRwmLd7NBVedTKXx kGsFyzuotreW36IuddjoiHjb2dMEKGGRzQflIgMRrBoXwQF4dHx/G4go6u+X98lFTAoNH5mIoqLq amVzZMIUNgCbsX8h/2KkoyDhKPFiykVSx1cXU86lnMv96lzoN999lXCsYOuWSOTbTK9N/geX4Sin KNeuXbsqvmoXQsHTilksBgidSKjSGbTkjQ7L75xZ0rG8g0ftcHBd6kaTVclQW5sPVQhzw6L/C1WH JStSf2vrF/X1Wt+j0SfuE4koFPtKsZirWrC+V8KsRpOD1HqT7ndpOZD01VehoZHgtZRz5QXlX33+ 3edfwQd8Qu70k1ZssvdiRlGuMoEuoMzpTC2dTZrQK6RapdLIFMlZ/6icC+Tbd7jeWcZpdtjp4IrX qbiUxR9sbrM1GVlkTXgbZOv6wGpy/29tIpBPjr1RBNwl6m071TYH4y/QpJJpLQaTF30Ylei0QmAo NCWpPCU0IeVWStLFi1+lSM98/nno59hBDt0+lvGpk39UFOXUb0wxBgvnVj74XH9fr4cFWNDXJpe/ nJ2Z6bP9qWNjhxurzCH6H17+qIq3GPlgqEBYEW0xsgCbrd1WYr+oDeMKMxZcgTAA1kvcO6Pi6ubm p40N8yg+XTtvnLeUnys/l3vu3LnylJSL5bdCL15MKd9apTVu+RzI+hxpWlXj5XbmKpD1m5TJDKZQ /oGLbH6q1GieKaUSqZop2vtS3jvz8qXXWgfXDpfqso1fLPXCCVRBVkww9rm5LVmy+IOGi+2cCDym WC63IsL4AoDWf65/jTBmMs2PyEx6g0noRnpjlCokR89dPJdUfuviufLc0Ju5Fz/9KeGrlOSI5s+/ SfoGYA2W3ixY8dup365e43RcDabcunqN6HduELZ8/YSgUiDqk0NpTk7KRV5TLx932IH5A1eQidW0 vxsz4u++zNHW/u+vbM/g+8S9/XKMK7FVwz5MR3E8wV+pNUj1BsmccgxdRpAIBIJn5QlfAaTy8u9S ys+lpJRf/OpMudaLkBka+s3n33yHDGZ863/hzKlrd57V3sqPv/XbIL6srKP+7jN9j7CSzuoXcUSQ QHVC6eTLmRnXxZD3Bxxc3MIWW7PAFtnq62tjuxgP7kcWBbrhOH1iEXD1+IOCcEBAeS8eYlLZoIWD 6gxKgUeETlClNybc+hRsFQqZ8dPFc+cuJoG1tFOpR0PhfP4dciuw9OJtyq1bV8vrk6s7mO61xWWN BVLJs9sTQjYnv00kEkE5KYW98rGXM/leK+wDN67ww6+zqoYtPFG+to6brFwttrUP44mgF/Zi79jC fNX7B5DV10fLv0bwMpr4YxKhbnp4Dl1BNGh1en1KecTum+cuYrhyL14MvZhScIsHgwtg+nx3KJJT P/C/xvr7ndW30tJu7d8VdeXKsZgBZc+EUsrmUUTYOzmAgLoWRQY81bopYCzQwd/NdjHWm5FFZyK9 7b38/04H22QC5IFVuw/OAoR90BmpQWJcsr5KJlNrhZWmR6y1yaZh2fwzaEIp5UkXUz5POffdudCL IGRKiixfJZNFpISGIrk1dTWDt2sHE7LKqJAP3ndqAhvLpMI7yo67zGIpE2NLdKe8pu6JJL9X/ueM 8dm/lnDqP3jJ1svWJtjRxfvvfFhMa/tNLH7c++djSCwga7xXhDkr5JpYvJf4TCtQSLRGg1ai/ijf 1CAwjKHQc3LPXQQMoSm3bp0DWKEpP6lUYzCbHQpFahubBorKam9V3z5DaztoS0kvq/k0uudOzx0l L/M2zCdiOVNc1nf9SQ+3lzIp7526/8W/PmkCa5WAhivoiK+jk5UqR1iJzohemidBwse9j//mrE0O Q8S1NtFW/BhD0lCllQ4bUE/3qXmtRjMvYe1OSEr59FZCaBIW8hfLz1387rvQFDUDVXHHkNs5jRUD nbVHa0r++5OLLcXnqc+XS5tapMrB23U8LmgoEnF5gzk1d9CJPlQe1Ntzq+JW00s7+0WfNA4U/QCI vBd9CHnbrSGPpybNj/98DJMDxpY16QFVvFjURsQp9bJhY/PwmCTI19H992fzz+YtFm35sYIc6Dgp 36RcvFh+8RyU4OehW44eUjFkSEVaRVZp0WDJAIfI9DoYRUksc2hMu62821RzS3ibAXUIP/lJS2NN vaxOJZbfKbnVlGu4cwd/6H5n54MaqMcPJrOxcZqSPx6fmpzsHZdbqcI+4HoN86YY5y+TGLVhhgaB 2tPX0/0jT5kRGDMqCj49tzbl1sXPv9vyTeTFi+cgHEDJBJ5ChpSl3SqpiCtpuTJQXnumsRxGjbqK ptrSK2V3CpgTmLOArydPazrr79TJ71y5XV6Q0nH7SkdOUw3A6nyC/Ovvdrg4Iip/3Dz5kiPGmk6f vO/DEJEoZmJFg4vE3scyZkhv3hsQEOzu4kleZ7AYjYaqmxiW0KTQ8tDPQ6FFJmzZ/a2Az5PJkMHc usbDWU9zaq/U1w90NOKEt12bOsuartSxrzHv3BEz29pEgs4H9U09d++I6nOkt6rLSosr67NqBu43 Pe388lnN4O4lGFleEZQAN2abGADJe/+Uy4HlfvDZb4l9EKdML6JCNjz8jD3MdA/wDvDw8VT7Buyd 15ie7b4ZmvTdFjA98JRSUMCFSV4hgxuk9lZO7k85jVm3G0s6W2ppA/EdMSVNX5aUsNKZbew7orYO MffBwIOSu50tg8315RUVh7mc2wM1pU1PSh8M/O9tS0tnzZfYmki6RvG37wVYmN3/HO/tfQygemlW rtrEfmca9AqUzeIGB7kHBPgE0BYC3N19UueNkt2hX6VsKQhN2fJdAp+rFEgEqFomkSmQ3vK0ChAx p+ZCTU5jU0d9SWNWXVHdhcxA1m/MtrtoG6f09tMHJU+L6ps6mtJqbyXw6xv/N5Cb1Vh3p6O5ZeDC QOngU8TeyUvMvObthr3n1Jqj8slJgNWbL27DeqJY7OKvZZgUmeTgAF93n4O+nhtZbQG7POFY3kSk YNmQsDbSSyKQStRqNSpDi0lIeW5OY2NjVn3J4Zqs0sbOpv/VlnQ21d05Sivj3bpTdpspGiht6uxs qocgaUrKyrndWNFYUdpY23is+EFnTXHJk8GaFTZOETQx0++3ZcDLY2sjhJocn+wTwbrSa4WFx3co XigY+b7uUUCT304eqdcnwDPAx8dznb4g6ZuU5MgVhGZpM68BuBKgdCIBSUrpz6rIyWoqSiv677cV jU2Nh6/U514pqn96/7b0TketGB3kXq9p6qwHLEmHk0DFiqbGwZwHFaUDNTVFdwYHmzpv27gRKZS2 XooXcIW9oZU5CRJOyvsoHBhyxNhok0iUSLR8XnwAHM8gIq6a670/YJePZ4Cv7y7Pc1u++nxLaGSq QoYCUwSphO0ViGypflqbk5Z1M6si42hj47HGmoyciqTO+uY7VzoGb5dV8Gru9zTV/fK/uoKcmP8e zspNyskBZEcHanLu375S0lhW0zQ4uDjSvhomSGxoAAXFbXinl+bexLZ/i8S9UMr9YqzZo6iWFQIa +ga7B+FCAoKCMLL2x/vscgerrQ3dsmUrnY+9yUMm4/H51XTk8O7QnIGKik/SauNKs2pLaxqTsHyo aKpLqx0cqKltAkkH6ls6n3YOJITurtgNmVxemtQ5kAHKDtx+0vmgZcDJjUZdvBcGyF5riMpFm/Cb 2sDrbUzr4NUvHu/rJSjZKMM3wC8gyCcg5CC4PioIuMI+fIImfTx9zl3k0PgMLspisVABlCKyKHRt aVNOWkVc1s7SxpqY2tvf7s7NvVMeN8Cur6spKRlsyik5mgbJWdNZ09iZlpR0Lq08tyKuvqYGlC3p bLzdQvUawHn5E53wvRQK8PNHn9jff1Nbm1jE6cVgQff6s1eFkzSr4wEFplxwQEDQLtAvINg3KsDH d8bTx8XTx6cN5eNwPImAqxCwBUYk1MYW8uxwTkxORUZjbtPO2w8Scivqa2+V196ubqqrqSgdHPwl 7WlnxvWMgcak+lDAdbhid1pRTU3pg6YaLFQvdA48n8hMdvGyxd5DB6NWm4u3G1DVZt2qof3I5ZPK QCkmobd3SEBUYlD8Lt+g4ODgoIAA32Af5q5d+z09fYkoH+Wx9DIeqh8bM0qQW7bekbufNiblxDWm nSttqk06nOzPzCp9Un/zdm59SU1jXWn9D09rajKeZtU1JT0Y2J0UerSztKSmprak5sGDEoB2vfOB 5vkMGU+NdPJoo1yDHA1xcRNxxG0fogKbCxukYdogoicIGOAdHL8/KChqf0B8AOSDT1BA/v4g3/0B wRQ8Ts3jVym0MGUMG7RIym5Hty0JoXH/TalI2Vpau/vTssPM5oLcnzqarjTdvxnT2Fn3S8b9uqaa iqTrnTWd12tiOrIGQNCaktImSIi7yuvX7w/MPTERaLBSetlfa4tnYpMDJHtfHxZi4t6+SZ1ME8EL CHCP9/OhxAcTA+J3wYUC9gKPxe8P8PX0gc+JyUT9lHbMYBw2GI165CKyyC0JGmboUaccaNo5t7Ii crk7axrLsyClYm7W305r+iEr7X81WVnXm64XPe3s/GSgCDPawIPOB0+bwGIPHoCSRlWNndcZHNHP vheUBDS/WUdmbPzqndKjmTjIK0gpn+CokJCooPigqKioYEpAcFBQfEAQZjWKezKr0qiHeUxpMMgk AuRW6JYVbklbKw5nfXW4MRdqMPdcblJZ1kBtbdJgU1ZuTUvalYz/X8svDx50Xm8qfVBTVJIBLbq+ EwzfWVrxGmDVF11//p+W651O9hwiMZFo79KXz+QwxdZOLW573DeplKBMJxoEVkDIyr0HgzwAy/4g oCp4l0/wrv27fAL2B+8K9ksnEk1Gvd4o0cPNMHJxyxabrZ8m7HZbG1eRlVs6mFubW3EzJ6O+FqK8 EyvFtIy7D5qarjc9vT6I0dSZk1XTCU2xBmzVWHrnP0UlA7887WmBecKNgyNcIxPxtnvFTEov1oj+ gHGiTyeV8iCvooJ9fXxtNwUEeAQRg+ODg6OCg312xUcB2Kj9YDo8PZNuMDwa08IIa9RqkN1LtkAH /+qrr775b86tuMba0sHaT6/sTEqLS4ImE9eU03Lsy+tFD4qeQr+uedpZc71kZ8n9B1lPi0qySrNu 3cyqKS0tGnhwHaTc6MZKJi+pJtITXbz7mPlMa9uR9042C/w93b19fYIDfLwd3T1t3QOCg5nBwZTg XfHxu4K9IfWhJoMTOWySXjOs1euHpQajFvn01leLQrcc3BQaGpdUW591szR3d+7RnbW743bGZd2B BwZ2x8UV1dflAk9FRTWdvzTFNAJnGTElOTlZWf+pKK0By9cMdD44lOHFodLd3DhEWiTRzq/X6jCY BPlS6S6gyh1gBUT6OPr6BwUFUXwh5vdTvOMxyqJCKJ7unjQanaw3aoyFGr1ea9QgVwbr1+6s/3TL lrWHb547fA4iPukcdMkrScdqUy40lSTVlcUMlGVk7Wy6DvZ6+gCyvaSz5mlcY1IBhNbTitKcphIs vq63XPCqxpNdNvGI+RwqEb/MS3yNKZfLUQGBEhziDW3HOwiPDwihRAFZu6J8gjHnBwdDEQQx4+OD gqkcaibUoR5srx/WKpFjtYd255YeDf3mHCTlN9/kQHrl5BQcPpz7yYWSL2I6y8q+/KGuJKuz82k9 PDlUXn1NSc3A084m8H/nQFbF4ZymJqDr+kSPaCsr8Yy9E4tKc+HSiLCp9VMeyx8TBBwsRHftig/Y RYkiRoXs35W4KzhoV3wIZVdAcIjn/nhKPNPXx+dMMlFoHNbohzWY57VIQu7tmJ2/xGTUJsUlhZ5L upl1M+fcYFJSVkRWVsXuw0nffvv/xtTGZDUNpO0c6ARiakprm0pLmppKAOHT6yWHP4mrB7z1Ay3S Ng4tkb7JqZpIdrMjEmkRmxbbR+LQZnbQLnyQb4B7QBA+ICo+0TM4HsjZHwIpHxy1f7/nfh9KcFCw ry+eQpcCHv2w/tmYUa9BjpXdzI35V13dJ01l9TeTknIqdiedq01K2Z2R23Q07tu0gZgfvtwN9t4d 05TTWDoAaB5kdGZ1Xo8Dr3UO5MQdvo7NEKWv38lUai6VvAREpLk4+dMIHCLe7tNIBp8TTA3x2xXv 4+Mf4BcVEuwTAoYKCIFYgOSCeSJ+FyXg1C7PSCdHmlSvkUiUj5TDeo0M2flJTcuFL2Jqa8DChyty QMncm1dyqr+Mu3D027S6tOtFRWUxO4vSDh+GcC2twVh6UPTgaSk8/mCgtjymZmCgc6Bxoq7z/fu+ /jaciwsNT/O39adTacRTxEgijxF08GBQMD4gKMQfUjQI5iuXAM9d1jkrGL9rFyWEEg+UeW66FrnW YNTLDHqN/pn2kQQ5VnDll19aMj75JDcpruzwt4czfsgYWLskrqKorLT+zp0vD3/xbd3Ow0drf/kl rggsVdGY1QQ96OnODJAzt6mxqQTYamx58uT9+3fvVKcS8USeH83F0Y+YyPP2oyTieKcIUHkQ4yGQ 7vFQjL4wYAXHB+zHCjPY99Quyv6g+PgAfOS1xTyJTKJXajRKrUSiQOrvlv1yKKMoLS7hcExL7uGM ppqiDHi2mrqytJKSuKKYmKaY0l+Kv/22riSuqan2h4HG0qedT7OyYmoagd/GivqBzpaBJ/c759+9 e/+OnojDJUI52uKpNJ7dpmsuWz3z/50YEgVcJQIuKDjfYGAKuk1wsG+Qp6+7OyUeEtV9hR9zE1Gi lGj0WnRYJpDoh5GjGWV1gxcy6spKcrN2tpTW/VDa+cPtumO1g18eXftpTkZWxpcZOXFFGSVJh+vu l9V/WVLRVDRQFFe7uzQmJysNIhVKMqtp4v37989HO5f4E7cSiEQ3OzyVynPaRHNJ9qfkx4cE4YMS 9xJ3RYVA24mCYSbAB1B5RgW5wxQY7Aup5eZmjx+TSqTDMlQg1ChkQgmSdeXCjxfuZhRdKK7LrSuq v1ia0VmTVdOUG1caU1R7LO5K0xedNTHH0oqyvkmLiSspTUPzVvcAAA7iSURBVCqN6Ww6WgNNICer IguWk86Sifv1E4MTdQMl/7O1WXKGSk12oR6knmlzcsq3K4hEiPG0gyGE+I2UKArEql8ANgb6wKTs 4xskVpDIAYm+nosXL/FLHNPD5qNXSpUC2MqESMyFspILx9L+FbezPqG+vu7KlZacirjOc8SdFRkZ Md9mfJJ1IeZoWVZ9TtqxuJjSopja/8Zh43JJ0rkVKXFJSYOlg7AytgzeHrwPprextbWhHaRS8cRI As/RneaYcCwhckkIII0ghuA9oOPEB8SHBIO7YJpAM6ksnPvKXZ5uyOLFiyVqpUQqgUrUCyolAhly 7FBBQVndnYyyY/W3d+aUlV3JHUgafFCxe0XtziKHmM/KAc3duLhjVzJ2H03affhm6c1PHAauD5Tu Tst5lpPWWDtQUau/Avbv7HzS8rwIFtlFNv7UxGQqleXmeCaETidFJLjY4cIiKHsh4qPiQ/DYFhYE ceWDJO/y9l7p4/ORvdsmx36QUCaVSoQSoVQiUEqRtFvl3xZ8kfavb8vv1FzYXV4fl7Q7Kac0Z0VS 0idZ0TEZMVk7M27uhFpMKMmIy7kZV1GaFTNQ8/SHmlvNFbthB8pKg4mwoqimvnOw5oktstjWZtEi mHBC8Di3TTR/dgG9oCDiU8SLFeGRGB8VHxACrSckyhfyIcB9kY+P+0feK7032bu7Ke/JFDAAKQVK OiqUMJTI7fKjxYc+iYs5fOwYKeNQ6OG4krhvcko/zf00NCv3aFpMVnXB0cNZpUVxZfVpVypyyrIO N4GjBjpLMp4m/auiIulmxUAW9KWmmrqJNwveyJKkRYsWbUVoRHwiHheyKZN+hk5POPapPxJIT0z0 T/w37GE+8TCMuq90911pY7PyI+zfLnj7SaRSgaABuBJclgiVSqUQud1Ev1Nw4W7K7rK4srL7oYd3 1pTsXutQezM3Nyk3Li0trjhmd11GRdat2ty0mIqjtXHg8dpbA6UD5253dCTV5+T2NMEM3dT018TC /DsEgeENWYRfbOuEx3kT7aJCDtGP0en05IStizYd9AqKCvaDRhgMbHm6r1zpbmNr47gSWfTRJrUE Fcpge20WSBoawPKKZuTCj/Tcrz690HjoduaV64P3c1vqBpouppzLTdm9My63Pm13UVJgxiHs3rmk rC++uHn4/8kBtnamgc7PknKaGktvP4PFsvG+ZeH9whs361/72BzcZLNoE0wRXmT/BDomIy2ZlLBp sX8AEUcL9gkIgiHHJ2DlSp+VH9mstEXA8A0CkA9VoJIGVrNA2iwUSJGMQwllh1oyEo6WHTpQ1nKl 4mhZS1rSlbqym4P1MSUxh8tiSnbHXbmTlXvlVm3OlR++LLpyG+IjKebwucM5z3JvldRcqWjKGHwz aMH+H1v2CLJoyaJFW9ba2CRTl3D8/SPoyXR6QfKyZmpBZMImFzfPEL/gKHdvENFzpeNKR19fWztk EaLlC+AoLjfzpEKFlC3MbBYgF1IKDsXdTjl2rKDs0O4LFzquHE67Un9/sCYnbTCu5pOYtJgv6i4I i+O+3F1f9EvGL9e/3F3UlFHxr5qKnN1JSdIcbFAs/f9KuN6YttEz7qNFWsWKWr7kaDgWifY4REqc Dz45Jei+nPLnNFmdbCQHYWe2o7MU7sKsKJEpFZq1kBQzpEXQxgdtUQnVqSwgyrLqWFRl3brdwUEL tB9mNBiX+VY0rsaKRGCFk/b67pVe598H//w8v/f3PG/e933u3Ts6enVycnDSdP5UndVu/mtZ5RZP n+pqYiVWkkS2ts4mAoNZIHt7Y7sbBKOL7zVcPH+2oeG8uUSzOzMDVPThQu5rZX5+NreSWxidhxKC JHcW5UVelrN8anlYIJhHi6jUn/4cR3wMhhAJRgIKlueFxLKQ9HVG72Yn78SjnSDXAEH01dzck6lr I/8zz3AfHN24Gqprs0LQ6aq3nNQpACsYBMwSg25rnbnVQCTtNY3tl7uuXGl4r+FnF8F4fMtccngI sMzHbs6M5RbGlNzDm7lcbh6iZV6mB2NenM++kPNzKYSD5SlyuINJMzSCgfakRcCYuC/hA23yevT+ 7dvRO55ounhtJEFw3SO/v7b4+qjw5uTN0cG/Qh2hpvN175rmcoarIHcTKQJrSYFaa21MDAZJmITP Wl0T7vcvN9SbE7T3AK+qlpQLEYBkdHbs5sxsZn40LM4/nIW4fDyVoi24LOND0wJOk6RMp1BPf38S iz+im5sJDKMJTPDQSTqezc5N5peFRPR2NDH3qBMjCiPTyel/SycHANbB3rOO0FW3v+M0VPWu1dUD Qe7GMMAiifgpezUr4QFKJFncbm1sbXU1+OsvX/mpuRBSNzo7PruQySmZntH58TElI2YeKhVomJgi ORnNysHBbCrrweZexOVUmsFRIs7w3d0og8WTQhxYihGwLPby9vJdLBpt8RH8Yj+WuDY1NfemMPLf w4PX8Pp+CSbbqVBH/emzVmsrVQW1O0VSDJKkt85f3QdolmnsG2RFr63a+37rxcv1Z8x9TNCsklHC 8xllbDSWiYjzmZgSZk9OIEeedQTTJH2umMaxrBBNI2JQofN3ibTAhDg6GvfFk0wWo30pT/5efGou cT2aTTBEkU9JQ5/LRCca/0Y+ONrxtz3bmyUjXZTbXeW0WpvcFAS5WgNeW5j9Y2W1q1oSyUCfyyaR eNDb9q7Vzl62NprLDEsfzM4osQXFPPAdjolsJhBWxEoFks+RJM7BeB+HpJBB3OMX/XRKmMNxGscE BgdZPgFyGwHh44m00M9P8sKdZGLyfpSg5Uf84tSb4nD86PBwZVZagp0dXZGqNhdUZWu1kM4QZPcG va3QkqEbxyczQYlyB63mCGCDOBiTF9xnFAqyT4zOZEZnZ0bHxsZjvaICfvayx8cVKOuHUxyX8jrg 6ZSczm5MAwW0ONL0/eFBn+BrifoEwC5hSuD5oWvd/MZQ/AlPC763segQn3qVLBS+eXNU3Prg1MQ7 20bJLFu2v28WPtxXS/t7Kuv1N/1CNVRjwKiclKjq9/1iLEzZgZLBTdWXr9yQpIdjANTs/MSsqFAT oksUKRd7qANrCThXKHKyjHI0k+fwwRciLuHN00jKw2FYnGEYoF0tuODj3u5OpKJJnkZ5TPIJdFFg ivvffftq//XRzrrLWr8+s7ulGlsmrP1D44eKaiUqxv5QAG5bMx7o5iZgNydJLOToCcZIb1O9KBUB qkCkV3EpYdEV6wmyQda1e1wB1sqn0zA6SAsyCctICHkx0oxyEh73ZDtbHNFLKBiEPNGSHiKSUQzj h6b4LP3bTkHopzl+avrpd6939/d3VlasZzPUxAdbqloy4ewZqqpphlHS1pd0cNU2jW3jK+OwUja+ gsSJX1W5JSBmcCDWp4QzmdlMZEwMj0aooBhxBUnvcaVyrEHJj2jHJYR+PEgyNziYDiIwY2HyOE8T OCogQrwfI3jAKVPB0nHiGsMvDvFpYY4YfsXzhW+Ki4WtrcBZqpdqtfVS6ypwXmmnpG5tqTsqeFnT dUPVdW1TK2nlAb1i6IfrvbU1lCT1iSwlFYGqf6xk+iJiRuyLBLvYD1kbsNWxrkKPP+Km6XyLA5cv kTIymHcMMrTFgW5wKIkmh0NEItGS5rpvpEFG3z3cnQbZDkH0z/FPJpf5wj8L/fIfHvyk7jMwj3d3 9fZM5EqqUdbN0jKaeQGgNjeB3VStVBowtr8ol806dfW2iTCA1WeGSyVgVzKxcMQVoVjW6/ZbM5WK XintQmlxJC4OW9BQWxGuwZthC9xhIQkCQ0My3c2hKEYgdEiAHaiHb8E6mThQVqJlemrq3jxdeD7y kBqvdQ70uimKivxpIvf3XEmv6Ia2B7pq1r0xfWhsAj+ufmpsasaAfmjWjvSDQCTF/CAgieORmGgX xUDYS1EBt8tpGgs8DrTIpAowPy0HUavzUlyEOdwRIlEGTvcz+Sj3hEi3tLREcQ58RSAdGNc93AmS wydg8vqf+3fu9CuKdaaX8lvZLmpgZmJ0YX3r49+VSkZpD3hT0w4BFE1bMssuapq+Cui2OaCXyxVj Rww+k1iQ9ARsrkgGjMLGDyk7RbmcFdCMw1Udmmp2kE4cqaE5WfJKTkuRJOE2DEcRziFdoqMJLI/4 MILj0A4MCRE+YrEQYnjh7j3m3stJbvpm10RPF/Dg5c96el9s3FxbWyktHfxYpMp0oQE4pYELGAGg 6XpJ3f5C14ECqDm2NxNUgiBBpCIs0GC3y03V1psbXvSTw4oKLXBpL58inPFUjUXqwHkHi9TgYMZi sTSjNHE9GxewBILCNIOS3QiHpT1xgmGw5DT/cpKZvznfQwXslL1xxt0bebqQ//YpyDFXPjE3HBn6 rlkaEphLV9W1H96YgvbltjFQPtQPjdIhKSrjgVY24vWTrXaHzen29wIVOT4BXtcg5iOJxRHEwsQt QSpkcfwcETwcjDoxGPakMCEf9fkwBEdxhEgBHWsemRYQrp/nN+Ibg57YoIt1vNPoPutqpfyjhcdj X+fWCutqvnSgrRk/VqwEqEAva2vbO8ByJsm+rGjbB3t62ViLzGQabSATA1yn/G6bzXZsnnBQjYp+ DNXgFsQvOc4NO0kbB/v9IcslGFCpm0RauOj1FIg7fD9Jkp1C5zIIQ7yAIUzn8PRIcsPn9T1DaOrM qVrK3tpKLTzN3f/bwl9Wcs+BOpQ+0cB9TVBlwCp1RwOA1O1t02Z/vgW8emvTdHKJHQePY2dZF3Ch 3+48qZg79lWASodgHA/BDi8ukH2ws8YZCl21oLi3iKYlS3Ne8F3HEgQQLzDXQAgEUI7rAHF75EXh ZVYp0hekerf1TGNTI/tg4qmSe/D4N88XHqyurKvmTXeB5wAWbQkQq2SYTiybFFu/ZQDjlW4BPxpG 2dbV92l7wO60W+vtfQCU/j0Qt8omgMV5ENwZ9p5jSba2puOXVzuutl2lZQ+H0HiKE2ghSRDNBEp0 /hrlJS4LJIPoJDwIJiQSk3fra63udqq91TwqOCo8Hlj+6/M1eUX7R7m8V9aANmxqP7ZtrWx+KoG+ aqibmrq5ub2qGsCiS64AS/kd/uraWjPofF8ydK0yMPB/u/CTdQdAY0cAAAAASUVORK5CYII= " width="300" height="300" id="image" x="0" y="0" /> <use xlink:href="#image" transform="translate(300,0)" style="filter:url(#replaceHue)"/> <use xlink:href="#image" transform="translate(600,0)" style="filter:url(#replaceHueFromLayer)"/> </g> </svg>