#!/usr/bin/env python """ TODO: This only snaps selected elements, and if those elements are part of a group or layer that has it's own transform, that won't be taken into account, unless you snap the group or layer as a whole. This can account for unexpected results in some cases (eg where you've got a non-integer translation on the layer you're working in, the elements in that layer won't snap properly). The workaround for now is to snap the whole group/layer, or remove the transform on the group/layer. I could fix it in the code by traversing the parent elements up to the document root & calculating the cumulative parent_transform. This could be done at the top of the pixel_snap method if parent_transform==None, or before calling it for the first time. TODO: Transforming points isn't quite perfect, to say the least. In particular, when translating a point bezier curve, we translate the handles by the same amount. BUT, some handles that are attached to a particular point are conceptually handles of the prev/next node. Best way to fix it would be to keep a list of the fractional_offsets[] of each point, without transforming anything. Then go thru each point and transform the appropriate handle according to the relevant fraction_offset in the list. i.e. calculate first, then modify. In fact, that might be a simpler algorithm anyway -- it avoids having to keep track of all the first_xy/next_xy guff. TODO: make elem_offset return [x_offset, y_offset] so we can handle non-symetric scaling ------------ Note: This doesn't work very well on paths which have both straight segments and curved segments. The biggest three problems are: a) we don't take handles into account (segments where the nodes are aligned are always treated as straight segments, even where the handles make it curve) b) when we snap a straight segment right before/after a curve, it doesn't make any attempt to keep the transition from the straight segment to the curve smooth. c) no attempt is made to keep equal widths equal. (or nearly-equal widths nearly-equal). For example, font strokes. I guess that amounts to the problyem that font hinting solves for fonts. I wonder if I could find an automatic font-hinting algorithm and munge it to my purposes? Some good autohinting concepts that may help: http://freetype.sourceforge.net/autohinting/archive/10Mar2000/hinter.html Note: Paths that have curves & arcs on some sides of the bounding box won't be snapped correctly on that side of the bounding box, and nor will they be translated/resized correctly before the path is modified. Doesn't affect most applications of this extension, but it highlights the fact that we take a geometrically simplistic approach to inspecting & modifying the path. """ from __future__ import division import sys # *** numpy causes issue #4 on Mac OS 10.6.2. I use it for # matrix inverse -- my linear algebra's a bit rusty, but I could implement my # own matrix inverse function if necessary, I guess. from numpy import matrix import simplestyle, simpletransform, simplepath # INKEX MODULE # If you get the "No module named inkex" error, uncomment the relevant line # below by removing the '#' at the start of the line. # #sys.path += ['/usr/share/inkscape/extensions'] # If you're using a standard Linux installation #sys.path += ['/usr/local/share/inkscape/extensions'] # If you're using a custom Linux installation #sys.path += ['C:\\Program Files\\Inkscape\\share\\extensions'] # If you're using a standard Windows installation try: import inkex except ImportError: raise ImportError("No module named inkex.\nPlease edit the file %s and see the section titled 'INKEX MODULE'" % __file__) Precision = 5 # number of digits of precision for comparing float numbers MaxGradient = 1/200 # lines that are almost-but-not-quite straight will be snapped, too. class TransformError(Exception): pass def elemtype(elem, matches): if not isinstance(matches, (list, tuple)): matches = [matches] for m in matches: if elem.tag == inkex.addNS(m, 'svg'): return True return False def invert_transform(transform): transform = transform[:] # duplicate list to avoid modifying it transform += [[0, 0, 1]] inverse = matrix(transform).I.tolist() inverse.pop() return inverse def transform_point(transform, pt, inverse=False): """ Better than simpletransform.applyTransformToPoint, a) coz it's a simpler name b) coz it returns the new xy, rather than modifying the input """ if inverse: transform = invert_transform(transform) x = transform[0][0]*pt[0] + transform[0][1]*pt[1] + transform[0][2] y = transform[1][0]*pt[0] + transform[1][1]*pt[1] + transform[1][2] return x,y def transform_dimensions(transform, width=None, height=None, inverse=False): """ Dimensions don't get translated. I'm not sure how much diff rotate/skew makes in this context, but we currently ignore anything besides scale. """ if inverse: transform = invert_transform(transform) if width is not None: width *= transform[0][0] if height is not None: height *= transform[1][1] if width is not None and height is not None: return width, height if width is not None: return width if height is not None: return height def vertical(pt1, pt2): hlen = abs(pt1[0] - pt2[0]) vlen = abs(pt1[1] - pt2[1]) if vlen==0 and hlen==0: return True elif vlen==0: return False return (hlen / vlen) < MaxGradient def horizontal(pt1, pt2): hlen = round(abs(pt1[0] - pt2[0]), Precision) vlen = round(abs(pt1[1] - pt2[1]), Precision) if hlen==0 and vlen==0: return True elif hlen==0: return False return (vlen / hlen) < MaxGradient class PixelSnapEffect(inkex.Effect): def elem_offset(self, elem, parent_transform=None): """ Returns a value which is the amount the bounding-box is offset due to the stroke-width. Transform is taken into account. """ stroke_width = self.stroke_width(elem) if stroke_width == 0: return 0 # if there's no stroke, no need to worry about the transform transform = self.transform(elem, parent_transform=parent_transform) if abs(abs(transform[0][0]) - abs(transform[1][1])) > (10**-Precision): raise TransformError("Selection contains non-symetric scaling") # *** wouldn't be hard to get around this by calculating vertical_offset & horizontal_offset separately, maybe 2 functions, or maybe returning a tuple stroke_width = transform_dimensions(transform, width=stroke_width) return (stroke_width/2) def stroke_width(self, elem, setval=None): """ Return stroke-width in pixels, untransformed """ style = simplestyle.parseStyle(elem.attrib.get('style', '')) stroke = style.get('stroke', None) if stroke == 'none': stroke = None stroke_width = 0 if stroke and setval is None: stroke_width = self.unittouu(style.get('stroke-width', '').strip()) if setval: style['stroke-width'] = str(setval) elem.attrib['style'] = simplestyle.formatStyle(style) else: return stroke_width def snap_stroke(self, elem, parent_transform=None): transform = self.transform(elem, parent_transform=parent_transform) stroke_width = self.stroke_width(elem) if (stroke_width == 0): return # no point raising a TransformError if there's no stroke to snap if abs(abs(transform[0][0]) - abs(transform[1][1])) > (10**-Precision): raise TransformError("Selection contains non-symetric scaling, can't snap stroke width") if stroke_width: stroke_width = transform_dimensions(transform, width=stroke_width) stroke_width = round(stroke_width) stroke_width = transform_dimensions(transform, width=stroke_width, inverse=True) self.stroke_width(elem, stroke_width) def transform(self, elem, setval=None, parent_transform=None): """ Gets this element's transform. Use setval=matrix to set this element's transform. You can only specify parent_transform when getting. """ transform = elem.attrib.get('transform', '').strip() if transform: transform = simpletransform.parseTransform(transform) else: transform = [[1,0,0], [0,1,0], [0,0,1]] if parent_transform: transform = simpletransform.composeTransform(parent_transform, transform) if setval: elem.attrib['transform'] = simpletransform.formatTransform(setval) else: return transform def snap_transform(self, elem): # Only snaps the x/y translation of the transform, nothing else. # Scale transforms are handled only in snap_rect() # Doesn't take any parent_transform into account -- assumes # that the parent's transform has already been snapped. transform = self.transform(elem) if transform[0][1] or transform[1][0]: return # if we've got any skew/rotation, get outta here transform[0][2] = round(transform[0][2]) transform[1][2] = round(transform[1][2]) self.transform(elem, transform) def transform_path_node(self, transform, path, i): """ Modifies a segment so that every point is transformed, including handles """ segtype = path[i][0].lower() if segtype == 'z': return elif segtype == 'h': path[i][1][0] = transform_point(transform, [path[i][1][0], 0])[0] elif segtype == 'v': path[i][1][0] = transform_point(transform, [0, path[i][1][0]])[1] else: first_coordinate = 0 if (segtype == 'a'): first_coordinate = 5 # for elliptical arcs, skip the radius x/y, rotation, large-arc, and sweep for j in range(first_coordinate, len(path[i][1]), 2): x, y = path[i][1][j], path[i][1][j+1] x, y = transform_point(transform, (x, y)) path[i][1][j] = x path[i][1][j+1] = y def pathxy(self, path, i, setval=None): """ Return the endpoint of the given path segment. Inspects the segment type to know which elements are the endpoints. """ segtype = path[i][0].lower() x = y = 0 if segtype == 'z': i = 0 if segtype == 'h': if setval: path[i][1][0] = setval[0] else: x = path[i][1][0] elif segtype == 'v': if setval: path[i][1][0] = setval[1] else: y = path[i][1][0] else: if setval and segtype != 'z': path[i][1][-2] = setval[0] path[i][1][-1] = setval[1] else: x = path[i][1][-2] y = path[i][1][-1] if setval is None: return [x, y] def path_bounding_box(self, elem, parent_transform=None): """ Returns [min_x, min_y], [max_x, max_y] of the transformed element. (It doesn't make any sense to return the untransformed bounding box, with the intent of transforming it later, because the min/max points will be completely different points) The returned bounding box includes stroke-width offset. This function uses a simplistic algorithm & doesn't take curves or arcs into account, just node positions. """ # If we have a Live Path Effect, modify original-d. If anyone clamours # for it, we could make an option to ignore paths with Live Path Effects original_d = '{%s}original-d' % inkex.NSS['inkscape'] path = simplepath.parsePath(elem.attrib.get(original_d, elem.attrib['d'])) transform = self.transform(elem, parent_transform=parent_transform) offset = self.elem_offset(elem, parent_transform) min_x = min_y = max_x = max_y = 0 for i in range(len(path)): x, y = self.pathxy(path, i) x, y = transform_point(transform, (x, y)) if i == 0: min_x = max_x = x min_y = max_y = y else: min_x = min(x, min_x) min_y = min(y, min_y) max_x = max(x, max_x) max_y = max(y, max_y) return (min_x-offset, min_y-offset), (max_x+offset, max_y+offset) def snap_path_scale(self, elem, parent_transform=None): # If we have a Live Path Effect, modify original-d. If anyone clamours # for it, we could make an option to ignore paths with Live Path Effects original_d = '{%s}original-d' % inkex.NSS['inkscape'] path = simplepath.parsePath(elem.attrib.get(original_d, elem.attrib['d'])) transform = self.transform(elem, parent_transform=parent_transform) min_xy, max_xy = self.path_bounding_box(elem, parent_transform) width = max_xy[0] - min_xy[0] height = max_xy[1] - min_xy[1] # In case somebody tries to snap a 0-high element, # or a curve/arc with all nodes in a line, and of course # because we should always check for divide-by-zero! if (width==0 or height==0): return rescale = round(width)/width, round(height)/height min_xy = transform_point(transform, min_xy, inverse=True) max_xy = transform_point(transform, max_xy, inverse=True) for i in range(len(path)): self.transform_path_node([[1, 0, -min_xy[0]], [0, 1, -min_xy[1]]], path, i) # center transform self.transform_path_node([[rescale[0], 0, 0], [0, rescale[1], 0]], path, i) self.transform_path_node([[1, 0, +min_xy[0]], [0, 1, +min_xy[1]]], path, i) # uncenter transform path = simplepath.formatPath(path) if original_d in elem.attrib: elem.attrib[original_d] = path else: elem.attrib['d'] = path def snap_path_pos(self, elem, parent_transform=None): # If we have a Live Path Effect, modify original-d. If anyone clamours # for it, we could make an option to ignore paths with Live Path Effects original_d = '{%s}original-d' % inkex.NSS['inkscape'] path = simplepath.parsePath(elem.attrib.get(original_d, elem.attrib['d'])) transform = self.transform(elem, parent_transform=parent_transform) min_xy, max_xy = self.path_bounding_box(elem, parent_transform) fractional_offset = min_xy[0]-round(min_xy[0]), min_xy[1]-round(min_xy[1])-self.document_offset fractional_offset = transform_dimensions(transform, fractional_offset[0], fractional_offset[1], inverse=True) for i in range(len(path)): self.transform_path_node([[1, 0, -fractional_offset[0]], [0, 1, -fractional_offset[1]]], path, i) path = simplepath.formatPath(path) if original_d in elem.attrib: elem.attrib[original_d] = path else: elem.attrib['d'] = path def snap_path(self, elem, parent_transform=None): # If we have a Live Path Effect, modify original-d. If anyone clamours # for it, we could make an option to ignore paths with Live Path Effects original_d = '{%s}original-d' % inkex.NSS['inkscape'] path = simplepath.parsePath(elem.attrib.get(original_d, elem.attrib['d'])) transform = self.transform(elem, parent_transform=parent_transform) if transform[0][1] or transform[1][0]: # if we've got any skew/rotation, get outta here raise TransformError("Selection contains transformations with skew/rotation") offset = self.elem_offset(elem, parent_transform) % 1 prev_xy = self.pathxy(path, -1) first_xy = self.pathxy(path, 0) for i in range(len(path)): segtype = path[i][0].lower() xy = self.pathxy(path, i) if segtype == 'z': xy = first_xy if (i == len(path)-1) or \ ((i == len(path)-2) and path[-1][0].lower() == 'z'): next_xy = first_xy else: next_xy = self.pathxy(path, i+1) if not (xy and prev_xy and next_xy): prev_xy = xy continue xy_untransformed = tuple(xy) xy = list(transform_point(transform, xy)) prev_xy = transform_point(transform, prev_xy) next_xy = transform_point(transform, next_xy) on_vertical = on_horizontal = False if horizontal(xy, prev_xy): if len(path) > 2 or i==0: # on 2-point paths, first.next==first.prev==last and last.next==last.prev==first xy[1] = prev_xy[1] # make the almost-equal values equal, so they round in the same direction on_horizontal = True if horizontal(xy, next_xy): on_horizontal = True if vertical(xy, prev_xy): # as above if len(path) > 2 or i==0: xy[0] = prev_xy[0] on_vertical = True if vertical(xy, next_xy): on_vertical = True prev_xy = tuple(xy_untransformed) fractional_offset = [0,0] if on_vertical: fractional_offset[0] = xy[0] - (round(xy[0]-offset) + offset) if on_horizontal: fractional_offset[1] = xy[1] - (round(xy[1]-offset) + offset) - self.document_offset fractional_offset = transform_dimensions(transform, fractional_offset[0], fractional_offset[1], inverse=True) self.transform_path_node([[1, 0, -fractional_offset[0]], [0, 1, -fractional_offset[1]]], path, i) path = simplepath.formatPath(path) if original_d in elem.attrib: elem.attrib[original_d] = path else: elem.attrib['d'] = path def snap_rect(self, elem, parent_transform=None): transform = self.transform(elem, parent_transform=parent_transform) if transform[0][1] or transform[1][0]: # if we've got any skew/rotation, get outta here raise TransformError("Selection contains transformations with skew/rotation") offset = self.elem_offset(elem, parent_transform) % 1 width = self.unittouu(elem.attrib['width']) height = self.unittouu(elem.attrib['height']) x = self.unittouu(elem.attrib['x']) y = self.unittouu(elem.attrib['y']) width, height = transform_dimensions(transform, width, height) x, y = transform_point(transform, [x, y]) # Snap to the nearest pixel height = round(height) width = round(width) x = round(x - offset) + offset # If there's a stroke of non-even width, it's shifted by half a pixel y = round(y - offset) + offset width, height = transform_dimensions(transform, width, height, inverse=True) x, y = transform_point(transform, [x, y], inverse=True) y += self.document_offset/transform[1][1] # Position the elem at the newly calculate values elem.attrib['width'] = str(width) elem.attrib['height'] = str(height) elem.attrib['x'] = str(x) elem.attrib['y'] = str(y) def snap_image(self, elem, parent_transform=None): self.snap_rect(elem, parent_transform) def pixel_snap(self, elem, parent_transform=None): if elemtype(elem, 'g'): self.snap_transform(elem) transform = self.transform(elem, parent_transform=parent_transform) for e in elem: try: self.pixel_snap(e, transform) except TransformError, e: print >>sys.stderr, e return if not elemtype(elem, ('path', 'rect', 'image')): return self.snap_transform(elem) try: self.snap_stroke(elem, parent_transform) except TransformError, e: print >>sys.stderr, e if elemtype(elem, 'path'): self.snap_path_scale(elem, parent_transform) self.snap_path_pos(elem, parent_transform) self.snap_path(elem, parent_transform) # would be quite useful to make this an option, as scale/pos alone doesn't mess with the path itself, and works well for sans-serif text elif elemtype(elem, 'rect'): self.snap_rect(elem, parent_transform) elif elemtype(elem, 'image'): self.snap_image(elem, parent_transform) def effect(self): svg = self.document.getroot() self.document_offset = self.unittouu(svg.attrib['height']) % 1 # although SVG units are absolute, the elements are positioned relative to the top of the page, rather than zero for id, elem in self.selected.iteritems(): try: self.pixel_snap(elem) except TransformError, e: print >>sys.stderr, e if __name__ == '__main__': effect = PixelSnapEffect() effect.affect()