#!/usr/bin/env python ''' Copyright (C) 2007 John Beard john.j.beard@gmail.com ##This extension allows you to draw various triangle constructions ##It requires a path to be selected ##It will use the first three nodes of this path ## Dimensions of a triangle__ # # /`__ # / a_c``--__ # / ``--__ s_a # s_b / ``--__ # /a_a a_b`--__ # /--------------------------------``B # A s_b This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ''' # standard library import sys from math import * # local library import inkex import simplestyle import simplepath inkex.localize() #DRAWING ROUTINES #draw an SVG triangle given in trilinar coords def draw_SVG_circle(rad, centre, params, style, name, parent):#draw an SVG circle with a given radius as trilinear coordinates if rad == 0: #we want a dot r = style.d_rad #get the dot width from the style circ_style = { 'stroke':style.d_col, 'stroke-width':str(style.d_th), 'fill':style.d_fill } else: r = rad #use given value circ_style = { 'stroke':style.c_col, 'stroke-width':str(style.c_th), 'fill':style.c_fill } cx,cy = get_cartesian_pt(centre, params) circ_attribs = {'style':simplestyle.formatStyle(circ_style), inkex.addNS('label','inkscape'):name, 'cx':str(cx), 'cy':str(cy), 'r':str(r)} inkex.etree.SubElement(parent, inkex.addNS('circle','svg'), circ_attribs ) #draw an SVG triangle given in trilinar coords def draw_SVG_tri(vert_mat, params, style, name, parent): p1,p2,p3 = get_cartesian_tri(vert_mat, params) #get the vertex matrix in cartesian points tri_style = { 'stroke': style.l_col, 'stroke-width':str(style.l_th), 'fill': style.l_fill } tri_attribs = {'style':simplestyle.formatStyle(tri_style), inkex.addNS('label','inkscape'):name, 'd':'M '+str(p1[0])+','+str(p1[1])+ ' L '+str(p2[0])+','+str(p2[1])+ ' L '+str(p3[0])+','+str(p3[1])+ ' L '+str(p1[0])+','+str(p1[1])+' z'} inkex.etree.SubElement(parent, inkex.addNS('path','svg'), tri_attribs ) #draw an SVG line segment between the given (raw) points def draw_SVG_line( (x1, y1), (x2, y2), style, name, parent): line_style = { 'stroke': style.l_col, 'stroke-width':str(style.l_th), 'fill': style.l_fill } line_attribs = {'style':simplestyle.formatStyle(line_style), inkex.addNS('label','inkscape'):name, 'd':'M '+str(x1)+','+str(y1)+' L '+str(x2)+','+str(y2)} inkex.etree.SubElement(parent, inkex.addNS('path','svg'), line_attribs ) #lines from each vertex to a corresponding point in trilinears def draw_vertex_lines( vert_mat, params, width, name, parent): for i in range(3): oppositepoint = get_cartesian_pt( vert_mat[i], params) draw_SVG_line(params[3][-i%3], oppositepoint, width, name+':'+str(i), parent) #MATHEMATICAL ROUTINES def distance( (x0,y0),(x1,y1)):#find the pythagorean distance return sqrt( (x0-x1)*(x0-x1) + (y0-y1)*(y0-y1) ) def vector_from_to( (x0,y0),(x1,y1) ):#get the vector from (x0,y0) to (x1,y1) return (x1-x0, y1-y0) def get_cartesian_pt( t, p):#get the cartesian coordinates from a trilinear set denom = p[0][0]*t[0] + p[0][1]*t[1] + p[0][2]*t[2] c1 = p[0][1]*t[1]/denom c2 = p[0][2]*t[2]/denom return ( c1*p[2][1][0]+c2*p[2][0][0], c1*p[2][1][1]+c2*p[2][0][1] ) def get_cartesian_tri( ((t11,t12,t13),(t21,t22,t23),(t31,t32,t33)), params):#get the cartesian points from a trilinear vertex matrix p1=get_cartesian_pt( (t11,t12,t13), params ) p2=get_cartesian_pt( (t21,t22,t23), params ) p3=get_cartesian_pt( (t31,t32,t33), params ) return (p1,p2,p3) def angle_from_3_sides(a, b, c): #return the angle opposite side c cosx = (a*a + b*b - c*c)/(2*a*b) #use the cosine rule return acos(cosx) def translate_string(string, os): #translates s_a, a_a, etc to params[x][y], with cyclic offset string = string.replace('s_a', 'params[0]['+str((os+0)%3)+']') #replace with ref. to the relvant values, string = string.replace('s_b', 'params[0]['+str((os+1)%3)+']') #cycled by i string = string.replace('s_c', 'params[0]['+str((os+2)%3)+']') string = string.replace('a_a', 'params[1]['+str((os+0)%3)+']') string = string.replace('a_b', 'params[1]['+str((os+1)%3)+']') string = string.replace('a_c', 'params[1]['+str((os+2)%3)+']') string = string.replace('area','params[4][0]') string = string.replace('semiperim','params[4][1]') return string def pt_from_tcf( tcf , params):#returns a trilinear triplet from a triangle centre function trilin_pts=[]#will hold the final points for i in range(3): temp = tcf #read in the tcf temp = translate_string(temp, i) func = eval('lambda params: ' + temp.strip('"')) #the function leading to the trilinar element trilin_pts.append(func(params))#evaluate the function for the first trilinear element return trilin_pts #SVG DATA PROCESSING def get_n_points_from_path( node, n):#returns a list of first n points (x,y) in an SVG path-representing node p = simplepath.parsePath(node.get('d')) #parse the path xi = [] #temporary storage for x and y (will combine at end) yi = [] for cmd,params in p: #a parsed path is made up of (cmd, params) pairs defs = simplepath.pathdefs[cmd] for i in range(defs[1]): if defs[3][i] == 'x' and len(xi) < n:#only collect the first three xi.append(params[i]) elif defs[3][i] == 'y' and len(yi) < n:#only collect the first three yi.append(params[i]) if len(xi) == n and len(yi) == n: points = [] # returned pairs of points for i in range(n): xi[i] = Draw_From_Triangle.unittouu(e, str(xi[i]) + 'px') yi[i] = Draw_From_Triangle.unittouu(e, str(yi[i]) + 'px') points.append( [ xi[i], yi[i] ] ) else: #inkex.errormsg(_('Error: Not enough nodes to gather coordinates.')) #fail silently and exit, rather than invoke an error console return [] #return a blank return points #EXTRA MATHS FUNCTIONS def sec(x):#secant(x) if x == pi/2 or x==-pi/2 or x == 3*pi/2 or x == -3*pi/2: #sec(x) is undefined return 100000000000 else: return 1/cos(x) def csc(x):#cosecant(x) if x == 0 or x==pi or x==2*pi or x==-2*pi: #csc(x) is undefined return 100000000000 else: return 1/sin(x) def cot(x):#cotangent(x) if x == 0 or x==pi or x==2*pi or x==-2*pi: #cot(x) is undefined return 100000000000 else: return 1/tan(x) def report_properties( params ):#report to the Inkscape console using errormsg inkex.errormsg(_("Side Length 'a' (px): " + str( params[0][0] ) )) inkex.errormsg(_("Side Length 'b' (px): " + str( params[0][1] ) )) inkex.errormsg(_("Side Length 'c' (px): " + str( params[0][2] ) )) inkex.errormsg(_("Angle 'A' (radians): " + str( params[1][0] ) )) inkex.errormsg(_("Angle 'B' (radians): " + str( params[1][1] ) )) inkex.errormsg(_("Angle 'C' (radians): " + str( params[1][2] ) )) inkex.errormsg(_("Semiperimeter (px): " + str( params[4][1] ) )) inkex.errormsg(_("Area (px^2): " + str( params[4][0] ) )) return class Style(object): #container for style information def __init__(self, options): #dot markers self.d_rad = 4 #dot marker radius self.d_th = Draw_From_Triangle.unittouu(e, '2px') #stroke width self.d_fill= '#aaaaaa' #fill colour self.d_col = '#000000' #stroke colour #lines self.l_th = Draw_From_Triangle.unittouu(e, '2px') self.l_fill= 'none' self.l_col = '#000000' #circles self.c_th = Draw_From_Triangle.unittouu(e, '2px') self.c_fill= 'none' self.c_col = '#000000' class Draw_From_Triangle(inkex.Effect): def __init__(self): inkex.Effect.__init__(self) self.OptionParser.add_option("--tab", action="store", type="string", dest="tab", default="sampling", help="The selected UI-tab when OK was pressed") #PRESET POINT OPTIONS self.OptionParser.add_option("--circumcircle", action="store", type="inkbool", dest="do_circumcircle", default=False) self.OptionParser.add_option("--circumcentre", action="store", type="inkbool", dest="do_circumcentre", default=False) self.OptionParser.add_option("--incircle", action="store", type="inkbool", dest="do_incircle", default=False) self.OptionParser.add_option("--incentre", action="store", type="inkbool", dest="do_incentre", default=False) self.OptionParser.add_option("--contact_tri", action="store", type="inkbool", dest="do_contact_tri", default=False) self.OptionParser.add_option("--excircles", action="store", type="inkbool", dest="do_excircles", default=False) self.OptionParser.add_option("--excentres", action="store", type="inkbool", dest="do_excentres", default=False) self.OptionParser.add_option("--extouch_tri", action="store", type="inkbool", dest="do_extouch_tri", default=False) self.OptionParser.add_option("--excentral_tri", action="store", type="inkbool", dest="do_excentral_tri", default=False) self.OptionParser.add_option("--orthocentre", action="store", type="inkbool", dest="do_orthocentre", default=False) self.OptionParser.add_option("--orthic_tri", action="store", type="inkbool", dest="do_orthic_tri", default=False) self.OptionParser.add_option("--altitudes", action="store", type="inkbool", dest="do_altitudes", default=False) self.OptionParser.add_option("--anglebisectors", action="store", type="inkbool", dest="do_anglebisectors", default=False) self.OptionParser.add_option("--centroid", action="store", type="inkbool", dest="do_centroid", default=False) self.OptionParser.add_option("--ninepointcentre", action="store", type="inkbool", dest="do_ninepointcentre", default=False) self.OptionParser.add_option("--ninepointcircle", action="store", type="inkbool", dest="do_ninepointcircle", default=False) self.OptionParser.add_option("--symmedians", action="store", type="inkbool", dest="do_symmedians", default=False) self.OptionParser.add_option("--sym_point", action="store", type="inkbool", dest="do_sym_pt", default=False) self.OptionParser.add_option("--sym_tri", action="store", type="inkbool", dest="do_sym_tri", default=False) self.OptionParser.add_option("--gergonne_pt", action="store", type="inkbool", dest="do_gergonne_pt", default=False) self.OptionParser.add_option("--nagel_pt", action="store", type="inkbool", dest="do_nagel_pt", default=False) #CUSTOM POINT OPTIONS self.OptionParser.add_option("--mode", action="store", type="string", dest="mode", default='trilin') self.OptionParser.add_option("--cust_str", action="store", type="string", dest="cust_str", default='s_a') self.OptionParser.add_option("--cust_pt", action="store", type="inkbool", dest="do_cust_pt", default=False) self.OptionParser.add_option("--cust_radius", action="store", type="inkbool", dest="do_cust_radius", default=False) self.OptionParser.add_option("--radius", action="store", type="string", dest="radius", default='s_a') self.OptionParser.add_option("--isogonal_conj", action="store", type="inkbool", dest="do_isogonal_conj", default=False) self.OptionParser.add_option("--isotomic_conj", action="store", type="inkbool", dest="do_isotomic_conj", default=False) self.OptionParser.add_option("--report", action="store", type="inkbool", dest="report", default=False) def effect(self): so = self.options #shorthand pts = [] #initialise in case nothing is selected and following loop is not executed for id, node in self.selected.iteritems(): if node.tag == inkex.addNS('path','svg'): pts = get_n_points_from_path( node, 3 ) #find the (x,y) coordinates of the first 3 points of the path if len(pts) == 3: #if we have right number of nodes, else skip and end program st = Style(so)#style for dots, lines and circles #CREATE A GROUP TO HOLD ALL GENERATED ELEMENTS IN #Hold relative to point A (pt[0]) group_translation = 'translate(' + str( pts[0][0] ) + ','+ str( pts[0][1] ) + ')' group_attribs = {inkex.addNS('label','inkscape'):'TriangleElements', 'transform':group_translation } layer = inkex.etree.SubElement(self.current_layer, 'g', group_attribs) #GET METRICS OF THE TRIANGLE #vertices in the local coordinates (set pt[0] to be the origin) vtx = [[0,0], [pts[1][0]-pts[0][0],pts[1][1]-pts[0][1]], [pts[2][0]-pts[0][0],pts[2][1]-pts[0][1]]] s_a = distance(vtx[1],vtx[2])#get the scalar side lengths s_b = distance(vtx[0],vtx[1]) s_c = distance(vtx[0],vtx[2]) sides=(s_a,s_b,s_c)#side list for passing to functions easily and for indexing a_a = angle_from_3_sides(s_b, s_c, s_a)#angles in radians a_b = angle_from_3_sides(s_a, s_c, s_b) a_c = angle_from_3_sides(s_a, s_b, s_c) angles=(a_a,a_b,a_c) ab = vector_from_to(vtx[0], vtx[1]) #vector from a to b ac = vector_from_to(vtx[0], vtx[2]) #vector from a to c bc = vector_from_to(vtx[1], vtx[2]) #vector from b to c vecs= (ab,ac) # vectors for finding cartesian point from trilinears semiperim = (s_a+s_b+s_c)/2.0 #semiperimeter area = sqrt( semiperim*(semiperim-s_a)*(semiperim-s_b)*(semiperim-s_c) ) #area of the triangle by heron's formula uvals = (area, semiperim) #useful values params = (sides, angles, vecs, vtx, uvals) #all useful triangle parameters in one object if so.report: report_properties( params ) #BEGIN DRAWING if so.do_circumcentre or so.do_circumcircle: r = s_a*s_b*s_c/(4*area) pt = (cos(a_a),cos(a_b),cos(a_c)) if so.do_circumcentre: draw_SVG_circle(0, pt, params, st, 'Circumcentre', layer) if so.do_circumcircle: draw_SVG_circle(r, pt, params, st, 'Circumcircle', layer) if so.do_incentre or so.do_incircle: pt = [1,1,1] if so.do_incentre: draw_SVG_circle(0, pt, params, st, 'Incentre', layer) if so.do_incircle: r = area/semiperim draw_SVG_circle(r, pt, params, st, 'Incircle', layer) if so.do_contact_tri: t1 = s_b*s_c/(-s_a+s_b+s_c) t2 = s_a*s_c/( s_a-s_b+s_c) t3 = s_a*s_b/( s_a+s_b-s_c) v_mat = ( (0,t2,t3),(t1,0,t3),(t1,t2,0)) draw_SVG_tri(v_mat, params, st,'ContactTriangle',layer) if so.do_extouch_tri: t1 = (-s_a+s_b+s_c)/s_a t2 = ( s_a-s_b+s_c)/s_b t3 = ( s_a+s_b-s_c)/s_c v_mat = ( (0,t2,t3),(t1,0,t3),(t1,t2,0)) draw_SVG_tri(v_mat, params, st,'ExtouchTriangle',layer) if so.do_orthocentre: pt = pt_from_tcf('cos(a_b)*cos(a_c)', params) draw_SVG_circle(0, pt, params, st, 'Orthocentre', layer) if so.do_orthic_tri: v_mat = [[0,sec(a_b),sec(a_c)],[sec(a_a),0,sec(a_c)],[sec(a_a),sec(a_b),0]] draw_SVG_tri(v_mat, params, st,'OrthicTriangle',layer) if so.do_centroid: pt = [1/s_a,1/s_b,1/s_c] draw_SVG_circle(0, pt, params, st, 'Centroid', layer) if so.do_ninepointcentre or so.do_ninepointcircle: pt = [cos(a_b-a_c),cos(a_c-a_a),cos(a_a-a_b)] if so.do_ninepointcentre: draw_SVG_circle(0, pt, params, st, 'NinePointCentre', layer) if so.do_ninepointcircle: r = s_a*s_b*s_c/(8*area) draw_SVG_circle(r, pt, params, st, 'NinePointCircle', layer) if so.do_altitudes: v_mat = [[0,sec(a_b),sec(a_c)],[sec(a_a),0,sec(a_c)],[sec(a_a),sec(a_b),0]] draw_vertex_lines( v_mat, params, st, 'Altitude', layer) if so.do_anglebisectors: v_mat = ((0,1,1),(1,0,1),(1,1,0)) draw_vertex_lines(v_mat,params, st, 'AngleBisectors', layer) if so.do_excircles or so.do_excentres or so.do_excentral_tri: v_mat = ((-1,1,1),(1,-1,1),(1,1,-1)) if so.do_excentral_tri: draw_SVG_tri(v_mat, params, st,'ExcentralTriangle',layer) for i in range(3): if so.do_excircles: r = area/(semiperim-sides[i]) draw_SVG_circle(r, v_mat[i], params, st, 'Excircle:'+str(i), layer) if so.do_excentres: draw_SVG_circle(0, v_mat[i], params, st, 'Excentre:'+str(i), layer) if so.do_sym_tri or so.do_symmedians: v_mat = ((0,s_b,s_c), (s_a, 0, s_c), (s_a, s_b, 0)) if so.do_sym_tri: draw_SVG_tri(v_mat, params, st,'SymmedialTriangle',layer) if so.do_symmedians: draw_vertex_lines(v_mat,params, st, 'Symmedian', layer) if so.do_sym_pt: pt = (s_a,s_b,s_c) draw_SVG_circle(0, pt, params, st, 'SymmmedianPoint', layer) if so.do_gergonne_pt: pt = pt_from_tcf('1/(s_a*(s_b+s_c-s_a))', params) draw_SVG_circle(0, pt, params, st, 'GergonnePoint', layer) if so.do_nagel_pt: pt = pt_from_tcf('(s_b+s_c-s_a)/s_a', params) draw_SVG_circle(0, pt, params, st, 'NagelPoint', layer) if so.do_cust_pt or so.do_cust_radius or so.do_isogonal_conj or so.do_isotomic_conj: pt = []#where we will store the point in trilinears if so.mode == 'trilin':#if we are receiving from trilinears for i in range(3): strings = so.cust_str.split(':')#get split string strings[i] = translate_string(strings[i],0) func = eval('lambda params: ' + strings[i].strip('"')) #the function leading to the trilinar element pt.append(func(params)) #evaluate the function for the trilinear element else:#we need a triangle function string = so.cust_str #don't need to translate, as the pt_from_tcf function does that for us pt = pt_from_tcf(string, params)#get the point from the tcf directly if so.do_cust_pt:#draw the point draw_SVG_circle(0, pt, params, st, 'CustomTrilinearPoint', layer) if so.do_cust_radius:#draw the circle with given radius strings = translate_string(so.radius,0) func = eval('lambda params: ' + strings.strip('"')) #the function leading to the radius r = func(params) draw_SVG_circle(r, pt, params, st, 'CustomTrilinearCircle', layer) if so.do_isogonal_conj: isogonal=[0,0,0] for i in range (3): isogonal[i] = 1/pt[i] draw_SVG_circle(0, isogonal, params, st, 'CustomIsogonalConjugate', layer) if so.do_isotomic_conj: isotomic=[0,0,0] for i in range (3): isotomic[i] = 1/( params[0][i]*params[0][i]*pt[i] ) draw_SVG_circle(0, isotomic, params, st, 'CustomIsotomicConjugate', layer) if __name__ == '__main__': #pragma: no cover e = Draw_From_Triangle() e.affect()