#!/usr/bin/env python ''' Copyright (C) 2009 Michel Chatelain. Copyright (C) 2007 Tavmjong Bah, tavmjong@free.fr Copyright (C) 2006 Georg Wiora, xorx@quarkbox.de Copyright (C) 2006 Johan Engelen, johan@shouraizou.nl Copyright (C) 2005 Aaron Spike, aaron@ekips.org This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Changes: * This program is derived by Michel Chatelain from funcplot.py. His changes are in the Public Domain. * Michel Chatelain, 17-18 janvier 2009, a partir de funcplot.py * 20 janvier 2009 : adaptation a la version 0.46 a partir de la nouvelle version de funcplot.py ''' import inkex, simplepath, simplestyle from math import * from random import * def drawfunction(t_start, t_end, xleft, xright, ybottom, ytop, samples, width, height, left, bottom, fx = "cos(3*t)", fy = "sin(5*t)", times2pi = False, isoscale = True, drawaxis = True): if times2pi == True: t_start = 2 * pi * t_start t_end = 2 * pi * t_end # coords and scales based on the source rect scalex = width / (xright - xleft) xoff = left coordx = lambda x: (x - xleft) * scalex + xoff #convert x-value to coordinate scaley = height / (ytop - ybottom) yoff = bottom coordy = lambda y: (ybottom - y) * scaley + yoff #convert y-value to coordinate # Check for isotropic scaling and use smaller of the two scales, correct ranges if isoscale: if scaley<scalex: # compute zero location xzero = coordx(0) # set scale scalex = scaley # correct x-offset xleft = (left-xzero)/scalex xright = (left+width-xzero)/scalex else : # compute zero location yzero = coordy(0) # set scale scaley = scalex # correct x-offset ybottom = (yzero-bottom)/scaley ytop = (bottom+height-yzero)/scaley # functions specified by the user if fx != "": f1 = eval('lambda t: ' + fx.strip('"')) if fy != "": f2 = eval('lambda t: ' + fy.strip('"')) # step is increment of t step = (t_end - t_start) / (samples-1) third = step / 3.0 ds = step * 0.001 # Step used in calculating derivatives a = [] # path array # add axis if drawaxis : # check for visibility of x-axis if ybottom<=0 and ytop>=0: # xaxis a.append(['M ',[left, coordy(0)]]) a.append([' l ',[width, 0]]) # check for visibility of y-axis if xleft<=0 and xright>=0: # xaxis a.append([' M ',[coordx(0),bottom]]) a.append([' l ',[0, -height]]) # initialize functions and derivatives for 0; # they are carried over from one iteration to the next, to avoid extra function calculations. x0 = f1(t_start) y0 = f2(t_start) # numerical derivatives, using 0.001*step as the small differential t1 = t_start + ds # Second point AFTER first point (Good for first point) x1 = f1(t1) y1 = f2(t1) dx0 = (x1 - x0)/ds dy0 = (y1 - y0)/ds # Start curve a.append([' M ',[coordx(x0), coordy(y0)]]) # initial moveto for i in range(int(samples-1)): t1 = (i+1) * step + t_start t2 = t1 - ds # Second point BEFORE first point (Good for last point) x1 = f1(t1) x2 = f1(t2) y1 = f2(t1) y2 = f2(t2) # numerical derivatives dx1 = (x1 - x2)/ds dy1 = (y1 - y2)/ds # create curve a.append([' C ', [coordx(x0 + (dx0 * third)), coordy(y0 + (dy0 * third)), coordx(x1 - (dx1 * third)), coordy(y1 - (dy1 * third)), coordx(x1), coordy(y1)] ]) t0 = t1 # Next segment's start is this segments end x0 = x1 y0 = y1 dx0 = dx1 # Assume the functions are smooth everywhere, so carry over the derivatives too dy0 = dy1 return a class ParamCurves(inkex.Effect): def __init__(self): inkex.Effect.__init__(self) self.OptionParser.add_option("--t_start", action="store", type="float", dest="t_start", default=0.0, help="Start t-value") self.OptionParser.add_option("--t_end", action="store", type="float", dest="t_end", default=1.0, help="End t-value") self.OptionParser.add_option("--times2pi", action="store", type="inkbool", dest="times2pi", default=True, help="Multiply t-range by 2*pi") self.OptionParser.add_option("--xleft", action="store", type="float", dest="xleft", default=-1.0, help="x-value of rectangle's left") self.OptionParser.add_option("--xright", action="store", type="float", dest="xright", default=1.0, help="x-value of rectangle's right") self.OptionParser.add_option("--ybottom", action="store", type="float", dest="ybottom", default=-1.0, help="y-value of rectangle's bottom") self.OptionParser.add_option("--ytop", action="store", type="float", dest="ytop", default=1.0, help="y-value of rectangle's top") self.OptionParser.add_option("-s", "--samples", action="store", type="int", dest="samples", default=8, help="Samples") self.OptionParser.add_option("--fofx", action="store", type="string", dest="fofx", default="cos(3*t)", help="fx(t) for plotting") self.OptionParser.add_option("--fofy", action="store", type="string", dest="fofy", default="sin(5*t)", help="fy(t) for plotting") self.OptionParser.add_option("--remove", action="store", type="inkbool", dest="remove", default=True, help="If True, source rectangle is removed") self.OptionParser.add_option("--isoscale", action="store", type="inkbool", dest="isoscale", default=True, help="If True, isotropic scaling is used") self.OptionParser.add_option("--drawaxis", action="store", type="inkbool", dest="drawaxis", default=True, help="If True, axis are drawn") self.OptionParser.add_option("--tab", action="store", type="string", dest="tab", default="sampling", help="The selected UI-tab when OK was pressed") self.OptionParser.add_option("--paramcurvesuse", action="store", type="string", dest="paramcurvesuse", default="", help="dummy") self.OptionParser.add_option("--pythonfunctions", action="store", type="string", dest="pythonfunctions", default="", help="dummy") def effect(self): for id, node in self.selected.iteritems(): if node.tag == inkex.addNS('rect','svg'): # create new path with basic dimensions of selected rectangle newpath = inkex.etree.Element(inkex.addNS('path','svg')) x = float(node.get('x')) y = float(node.get('y')) w = float(node.get('width')) h = float(node.get('height')) #copy attributes of rect s = node.get('style') if s: newpath.set('style', s) t = node.get('transform') if t: newpath.set('transform', t) # top and bottom were exchanged newpath.set('d', simplepath.formatPath( drawfunction(self.options.t_start, self.options.t_end, self.options.xleft, self.options.xright, self.options.ybottom, self.options.ytop, self.options.samples, w,h,x,y+h, self.options.fofx, self.options.fofy, self.options.times2pi, self.options.isoscale, self.options.drawaxis))) newpath.set('title', self.options.fofx + " " + self.options.fofy) #newpath.set('desc', '!func;' + self.options.fofx + ';' + self.options.fofy + ';' # + `self.options.t_start` + ';' # + `self.options.t_end` + ';' # + `self.options.samples`) # add path into SVG structure node.getparent().append(newpath) # option wether to remove the rectangle or not. if self.options.remove: node.getparent().remove(node) if __name__ == '__main__': e = ParamCurves() e.affect() # vim: expandtab shiftwidth=4 tabstop=8 softtabstop=4 fileencoding=utf-8 textwidth=99