/***************************************************************************** * mtime.c: high resolution time management functions * Functions are prototyped in vlc_mtime.h. ***************************************************************************** * Copyright (C) 1998-2007 the VideoLAN team * Copyright © 2006-2007 Rémi Denis-Courmont * $Id$ * * Authors: Vincent Seguin <seguin@via.ecp.fr> * Rémi Denis-Courmont <rem$videolan,org> * Gisle Vanem * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301, USA. *****************************************************************************/ /***************************************************************************** * Preamble *****************************************************************************/ #ifdef HAVE_CONFIG_H # include "config.h" #endif #include "vlc_common.h" #include <time.h> /* clock_gettime(), clock_nanosleep() */ #include <assert.h> #include <errno.h> #ifdef HAVE_UNISTD_H # include <unistd.h> /* select() */ #endif #ifdef HAVE_KERNEL_OS_H # include <kernel/OS.h> #endif #if defined( WIN32 ) || defined( UNDER_CE ) # include <windows.h> # include <mmsystem.h> #endif #if defined( UNDER_CE ) # include <windows.h> #endif #if defined(HAVE_SYS_TIME_H) # include <sys/time.h> #endif #if defined(HAVE_NANOSLEEP) && !defined(HAVE_DECL_NANOSLEEP) int nanosleep(struct timespec *, struct timespec *); #endif #if !defined (_POSIX_CLOCK_SELECTION) # define _POSIX_CLOCK_SELECTION (-1) #endif # if (_POSIX_CLOCK_SELECTION < 0) /* * We cannot use the monotonic clock is clock selection is not available, * as it would screw vlc_cond_timedwait() completely. Instead, we have to * stick to the realtime clock. Nevermind it screws everything when ntpdate * warps the wall clock. */ # undef CLOCK_MONOTONIC # define CLOCK_MONOTONIC CLOCK_REALTIME #elif !defined (HAVE_CLOCK_NANOSLEEP) /* Clock selection without clock in the first place, I don't think so. */ # error We have quite a situation here! Fix me if it ever happens. #endif /** * Return a date in a readable format * * This function converts a mtime date into a string. * psz_buffer should be a buffer long enough to store the formatted * date. * \param date to be converted * \param psz_buffer should be a buffer at least MSTRTIME_MAX_SIZE characters * \return psz_buffer is returned so this can be used as printf parameter. */ char *mstrtime( char *psz_buffer, mtime_t date ) { static const mtime_t ll1000 = 1000, ll60 = 60, ll24 = 24; snprintf( psz_buffer, MSTRTIME_MAX_SIZE, "%02d:%02d:%02d-%03d.%03d", (int) (date / (ll1000 * ll1000 * ll60 * ll60) % ll24), (int) (date / (ll1000 * ll1000 * ll60) % ll60), (int) (date / (ll1000 * ll1000) % ll60), (int) (date / ll1000 % ll1000), (int) (date % ll1000) ); return( psz_buffer ); } /** * Convert seconds to a time in the format h:mm:ss. * * This function is provided for any interface function which need to print a * time string in the format h:mm:ss * date. * \param secs the date to be converted * \param psz_buffer should be a buffer at least MSTRTIME_MAX_SIZE characters * \return psz_buffer is returned so this can be used as printf parameter. */ char *secstotimestr( char *psz_buffer, int i_seconds ) { int i_hours, i_mins; i_mins = i_seconds / 60; i_hours = i_mins / 60 ; if( i_hours ) { snprintf( psz_buffer, MSTRTIME_MAX_SIZE, "%d:%2.2d:%2.2d", (int) i_hours, (int) (i_mins % 60), (int) (i_seconds % 60) ); } else { snprintf( psz_buffer, MSTRTIME_MAX_SIZE, "%2.2d:%2.2d", (int) i_mins , (int) (i_seconds % 60) ); } return( psz_buffer ); } #if defined (HAVE_CLOCK_NANOSLEEP) static unsigned prec = 0; static void mprec_once( void ) { struct timespec ts; if( clock_getres( CLOCK_MONOTONIC, &ts )) clock_getres( CLOCK_REALTIME, &ts ); prec = ts.tv_nsec / 1000; } #endif /** * Return a value that is no bigger than the clock precision * (possibly zero). */ static inline unsigned mprec( void ) { #if defined (HAVE_CLOCK_NANOSLEEP) static pthread_once_t once = PTHREAD_ONCE_INIT; pthread_once( &once, mprec_once ); return prec; #else return 0; #endif } /** * Return high precision date * * Use a 1 MHz clock when possible, or 1 kHz * * Beware ! It doesn't reflect the actual date (since epoch), but can be the machine's uptime or anything (when monotonic clock is used) */ mtime_t mdate( void ) { mtime_t res; #if defined (HAVE_CLOCK_NANOSLEEP) struct timespec ts; /* Try to use POSIX monotonic clock if available */ if( clock_gettime( CLOCK_MONOTONIC, &ts ) == EINVAL ) /* Run-time fallback to real-time clock (always available) */ (void)clock_gettime( CLOCK_REALTIME, &ts ); res = ((mtime_t)ts.tv_sec * (mtime_t)1000000) + (mtime_t)(ts.tv_nsec / 1000); #elif defined( HAVE_KERNEL_OS_H ) res = real_time_clock_usecs(); #elif defined( WIN32 ) || defined( UNDER_CE ) /* We don't need the real date, just the value of a high precision timer */ static mtime_t freq = INT64_C(-1); if( freq == INT64_C(-1) ) { /* Extract from the Tcl source code: * (http://www.cs.man.ac.uk/fellowsd-bin/TIP/7.html) * * Some hardware abstraction layers use the CPU clock * in place of the real-time clock as a performance counter * reference. This results in: * - inconsistent results among the processors on * multi-processor systems. * - unpredictable changes in performance counter frequency * on "gearshift" processors such as Transmeta and * SpeedStep. * There seems to be no way to test whether the performance * counter is reliable, but a useful heuristic is that * if its frequency is 1.193182 MHz or 3.579545 MHz, it's * derived from a colorburst crystal and is therefore * the RTC rather than the TSC. If it's anything else, we * presume that the performance counter is unreliable. */ LARGE_INTEGER buf; freq = ( QueryPerformanceFrequency( &buf ) && (buf.QuadPart == INT64_C(1193182) || buf.QuadPart == INT64_C(3579545) ) ) ? buf.QuadPart : 0; #if defined( WIN32 ) /* on windows 2000, XP and Vista detect if there are two cores there - that makes QueryPerformanceFrequency in any case not trustable? (may also be true, for single cores with adaptive CPU frequency and active power management?) */ HINSTANCE h_Kernel32 = LoadLibrary(_T("kernel32.dll")); if(h_Kernel32) { void WINAPI (*pf_GetSystemInfo)(LPSYSTEM_INFO); pf_GetSystemInfo = (void WINAPI (*)(LPSYSTEM_INFO)) GetProcAddress(h_Kernel32, _T("GetSystemInfo")); if(pf_GetSystemInfo) { SYSTEM_INFO system_info; pf_GetSystemInfo(&system_info); if(system_info.dwNumberOfProcessors > 1) freq = 0; } FreeLibrary(h_Kernel32); } #endif } if( freq != 0 ) { LARGE_INTEGER counter; QueryPerformanceCounter (&counter); /* Convert to from (1/freq) to microsecond resolution */ /* We need to split the division to avoid 63-bits overflow */ lldiv_t d = lldiv (counter.QuadPart, freq); res = (d.quot * 1000000) + ((d.rem * 1000000) / freq); } else { /* Fallback on timeGetTime() which has a milisecond resolution * (actually, best case is about 5 ms resolution) * timeGetTime() only returns a DWORD thus will wrap after * about 49.7 days so we try to detect the wrapping. */ static CRITICAL_SECTION date_lock; static mtime_t i_previous_time = INT64_C(-1); static int i_wrap_counts = -1; if( i_wrap_counts == -1 ) { /* Initialization */ #if defined( WIN32 ) i_previous_time = INT64_C(1000) * timeGetTime(); #else i_previous_time = INT64_C(1000) * GetTickCount(); #endif InitializeCriticalSection( &date_lock ); i_wrap_counts = 0; } EnterCriticalSection( &date_lock ); #if defined( WIN32 ) res = INT64_C(1000) * (i_wrap_counts * INT64_C(0x100000000) + timeGetTime()); #else res = INT64_C(1000) * (i_wrap_counts * INT64_C(0x100000000) + GetTickCount()); #endif if( i_previous_time > res ) { /* Counter wrapped */ i_wrap_counts++; res += INT64_C(0x100000000) * 1000; } i_previous_time = res; LeaveCriticalSection( &date_lock ); } #else struct timeval tv_date; /* gettimeofday() cannot fail given &tv_date is a valid address */ (void)gettimeofday( &tv_date, NULL ); res = (mtime_t) tv_date.tv_sec * 1000000 + (mtime_t) tv_date.tv_usec; #endif return res; } /** * Wait for a date * * This function uses select() and an system date function to wake up at a * precise date. It should be used for process synchronization. If current date * is posterior to wished date, the function returns immediately. * \param date The date to wake up at */ void mwait( mtime_t date ) { /* If the deadline is already elapsed, or within the clock precision, * do not even bother the system timer. */ date -= mprec(); #if defined (HAVE_CLOCK_NANOSLEEP) lldiv_t d = lldiv( date, 1000000 ); struct timespec ts = { d.quot, d.rem * 1000 }; int val; while( ( val = clock_nanosleep( CLOCK_MONOTONIC, TIMER_ABSTIME, &ts, NULL ) ) == EINTR ); if( val == EINVAL ) { ts.tv_sec = d.quot; ts.tv_nsec = d.rem * 1000; while( clock_nanosleep( CLOCK_REALTIME, 0, &ts, NULL ) == EINTR ); } #else mtime_t delay = date - mdate(); if( delay > 0 ) msleep( delay ); #endif } /** * More precise sleep() * * Portable usleep() function. * \param delay the amount of time to sleep */ void msleep( mtime_t delay ) { #if defined( HAVE_CLOCK_NANOSLEEP ) lldiv_t d = lldiv( delay, 1000000 ); struct timespec ts = { d.quot, d.rem * 1000 }; int val; while( ( val = clock_nanosleep( CLOCK_MONOTONIC, 0, &ts, &ts ) ) == EINTR ); if( val == EINVAL ) { ts.tv_sec = d.quot; ts.tv_nsec = d.rem * 1000; while( clock_nanosleep( CLOCK_REALTIME, 0, &ts, &ts ) == EINTR ); } #elif defined( HAVE_KERNEL_OS_H ) snooze( delay ); #elif defined( WIN32 ) || defined( UNDER_CE ) for (delay /= 1000; delay > 0x7fffffff; delay -= 0x7fffffff) Sleep (0x7fffffff); Sleep (delay); #elif defined( HAVE_NANOSLEEP ) struct timespec ts_delay; ts_delay.tv_sec = delay / 1000000; ts_delay.tv_nsec = (delay % 1000000) * 1000; while( nanosleep( &ts_delay, &ts_delay ) && ( errno == EINTR ) ); #else struct timeval tv_delay; tv_delay.tv_sec = delay / 1000000; tv_delay.tv_usec = delay % 1000000; /* If a signal is caught, you are screwed. Update your OS to nanosleep() * or clock_nanosleep() if this is an issue. */ select( 0, NULL, NULL, NULL, &tv_delay ); #endif } /* * Date management (internal and external) */ /** * Initialize a date_t. * * \param date to initialize * \param divider (sample rate) numerator * \param divider (sample rate) denominator */ void date_Init( date_t *p_date, uint32_t i_divider_n, uint32_t i_divider_d ) { p_date->date = 0; p_date->i_divider_num = i_divider_n; p_date->i_divider_den = i_divider_d; p_date->i_remainder = 0; } /** * Change a date_t. * * \param date to change * \param divider (sample rate) numerator * \param divider (sample rate) denominator */ void date_Change( date_t *p_date, uint32_t i_divider_n, uint32_t i_divider_d ) { /* change time scale of remainder */ p_date->i_remainder = p_date->i_remainder * i_divider_n / p_date->i_divider_num; p_date->i_divider_num = i_divider_n; p_date->i_divider_den = i_divider_d; } /** * Set the date value of a date_t. * * \param date to set * \param date value */ void date_Set( date_t *p_date, mtime_t i_new_date ) { p_date->date = i_new_date; p_date->i_remainder = 0; } /** * Get the date of a date_t * * \param date to get * \return date value */ mtime_t date_Get( const date_t *p_date ) { return p_date->date; } /** * Move forwards or backwards the date of a date_t. * * \param date to move * \param difference value */ void date_Move( date_t *p_date, mtime_t i_difference ) { p_date->date += i_difference; } /** * Increment the date and return the result, taking into account * rounding errors. * * \param date to increment * \param incrementation in number of samples * \return date value */ mtime_t date_Increment( date_t *p_date, uint32_t i_nb_samples ) { mtime_t i_dividend = (mtime_t)i_nb_samples * 1000000 * p_date->i_divider_den; p_date->date += i_dividend / p_date->i_divider_num; p_date->i_remainder += (int)(i_dividend % p_date->i_divider_num); if( p_date->i_remainder >= p_date->i_divider_num ) { /* This is Bresenham algorithm. */ assert( p_date->i_remainder < 2*p_date->i_divider_num); p_date->date += 1; p_date->i_remainder -= p_date->i_divider_num; } return p_date->date; } #ifndef HAVE_GETTIMEOFDAY #ifdef WIN32 /* * Number of micro-seconds between the beginning of the Windows epoch * (Jan. 1, 1601) and the Unix epoch (Jan. 1, 1970). * * This assumes all Win32 compilers have 64-bit support. */ #if defined(_MSC_VER) || defined(_MSC_EXTENSIONS) || defined(__WATCOMC__) # define DELTA_EPOCH_IN_USEC 11644473600000000Ui64 #else # define DELTA_EPOCH_IN_USEC 11644473600000000ULL #endif static uint64_t filetime_to_unix_epoch (const FILETIME *ft) { uint64_t res = (uint64_t) ft->dwHighDateTime << 32; res |= ft->dwLowDateTime; res /= 10; /* from 100 nano-sec periods to usec */ res -= DELTA_EPOCH_IN_USEC; /* from Win epoch to Unix epoch */ return (res); } static int gettimeofday (struct timeval *tv, void *tz ) { FILETIME ft; uint64_t tim; if (!tv) { return VLC_EGENERIC; } GetSystemTimeAsFileTime (&ft); tim = filetime_to_unix_epoch (&ft); tv->tv_sec = (long) (tim / 1000000L); tv->tv_usec = (long) (tim % 1000000L); return (0); } #endif #endif /** * @return NTP 64-bits timestamp in host byte order. */ uint64_t NTPtime64 (void) { struct timespec ts; #if defined (CLOCK_REALTIME) clock_gettime (CLOCK_REALTIME, &ts); #else { struct timeval tv; gettimeofday (&tv, NULL); ts.tv_sec = tv.tv_sec; ts.tv_nsec = tv.tv_usec * 1000; } #endif /* Convert nanoseconds to 32-bits fraction (232 picosecond units) */ uint64_t t = (uint64_t)(ts.tv_nsec) << 32; t /= 1000000000; /* There is 70 years (incl. 17 leap ones) offset to the Unix Epoch. * No leap seconds during that period since they were not invented yet. */ assert (t < 0x100000000); t |= ((70LL * 365 + 17) * 24 * 60 * 60 + ts.tv_sec) << 32; return t; }