/***************************************************************************** * common.c : audio output management of common data structures ***************************************************************************** * Copyright (C) 2002-2007 the VideoLAN team * $Id$ * * Authors: Christophe Massiot <massiot@via.ecp.fr> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301, USA. *****************************************************************************/ /***************************************************************************** * Preamble *****************************************************************************/ #ifdef HAVE_CONFIG_H # include "config.h" #endif #include <assert.h> #include "vlc_common.h" #include "vlc_aout.h" #include "aout_internal.h" /* * Instances management (internal and external) */ #define AOUT_ASSERT_FIFO_LOCKED aout_assert_fifo_locked(p_aout, p_fifo) static inline void aout_assert_fifo_locked( aout_instance_t * p_aout, aout_fifo_t * p_fifo ) { #ifndef NDEBUG if( p_fifo == &p_aout->output.fifo ) vlc_assert_locked( &p_aout->output_fifo_lock ); else { int i; for( i = 0; i < p_aout->i_nb_inputs; i++ ) { if( p_fifo == &p_aout->pp_inputs[i]->fifo) { vlc_assert_locked( &p_aout->input_fifos_lock ); break; } } if( i == p_aout->i_nb_inputs ) vlc_assert_locked( &p_aout->mixer_lock ); } #else (void)p_aout; (void)p_fifo; #endif } /* Local functions */ static void aout_Destructor( vlc_object_t * p_this ); /***************************************************************************** * aout_New: initialize aout structure *****************************************************************************/ aout_instance_t * __aout_New( vlc_object_t * p_parent ) { aout_instance_t * p_aout; vlc_value_t val; /* Allocate descriptor. */ p_aout = vlc_object_create( p_parent, VLC_OBJECT_AOUT ); if( p_aout == NULL ) { return NULL; } /* Initialize members. */ vlc_mutex_init( &p_aout->input_fifos_lock ); vlc_mutex_init( &p_aout->mixer_lock ); vlc_mutex_init( &p_aout->output_fifo_lock ); p_aout->i_nb_inputs = 0; p_aout->mixer.f_multiplier = 1.0; p_aout->mixer.b_error = 1; p_aout->output.b_error = 1; p_aout->output.b_starving = 1; var_Create( p_aout, "intf-change", VLC_VAR_BOOL ); val.b_bool = true; var_Set( p_aout, "intf-change", val ); vlc_object_set_destructor( p_aout, aout_Destructor ); return p_aout; } /***************************************************************************** * aout_Destructor: destroy aout structure *****************************************************************************/ static void aout_Destructor( vlc_object_t * p_this ) { aout_instance_t * p_aout = (aout_instance_t *)p_this; vlc_mutex_destroy( &p_aout->input_fifos_lock ); vlc_mutex_destroy( &p_aout->mixer_lock ); vlc_mutex_destroy( &p_aout->output_fifo_lock ); } /* * Formats management (internal and external) */ /***************************************************************************** * aout_FormatNbChannels : return the number of channels *****************************************************************************/ unsigned int aout_FormatNbChannels( const audio_sample_format_t * p_format ) { static const uint32_t pi_channels[] = { AOUT_CHAN_CENTER, AOUT_CHAN_LEFT, AOUT_CHAN_RIGHT, AOUT_CHAN_REARCENTER, AOUT_CHAN_REARLEFT, AOUT_CHAN_REARRIGHT, AOUT_CHAN_MIDDLELEFT, AOUT_CHAN_MIDDLERIGHT, AOUT_CHAN_LFE }; unsigned int i_nb = 0, i; for ( i = 0; i < sizeof(pi_channels)/sizeof(uint32_t); i++ ) { if ( p_format->i_physical_channels & pi_channels[i] ) i_nb++; } return i_nb; } /***************************************************************************** * aout_BitsPerSample : get the number of bits per sample *****************************************************************************/ unsigned int aout_BitsPerSample( vlc_fourcc_t i_format ) { switch( i_format ) { case VLC_FOURCC('u','8',' ',' '): case VLC_FOURCC('s','8',' ',' '): return 8; case VLC_FOURCC('u','1','6','l'): case VLC_FOURCC('s','1','6','l'): case VLC_FOURCC('u','1','6','b'): case VLC_FOURCC('s','1','6','b'): return 16; case VLC_FOURCC('u','2','4','l'): case VLC_FOURCC('s','2','4','l'): case VLC_FOURCC('u','2','4','b'): case VLC_FOURCC('s','2','4','b'): return 24; case VLC_FOURCC('s','3','2','l'): case VLC_FOURCC('s','3','2','b'): case VLC_FOURCC('f','l','3','2'): case VLC_FOURCC('f','i','3','2'): return 32; case VLC_FOURCC('f','l','6','4'): return 64; default: /* For these formats the caller has to indicate the parameters * by hand. */ return 0; } } /***************************************************************************** * aout_FormatPrepare : compute the number of bytes per frame & frame length *****************************************************************************/ void aout_FormatPrepare( audio_sample_format_t * p_format ) { p_format->i_bitspersample = aout_BitsPerSample( p_format->i_format ); if( p_format->i_bitspersample > 0 ) { p_format->i_bytes_per_frame = ( p_format->i_bitspersample / 8 ) * aout_FormatNbChannels( p_format ); p_format->i_frame_length = 1; } } /***************************************************************************** * aout_FormatPrintChannels : print a channel in a human-readable form *****************************************************************************/ const char * aout_FormatPrintChannels( const audio_sample_format_t * p_format ) { switch ( p_format->i_physical_channels & AOUT_CHAN_PHYSMASK ) { case AOUT_CHAN_CENTER: if ( (p_format->i_original_channels & AOUT_CHAN_CENTER) || (p_format->i_original_channels & (AOUT_CHAN_LEFT | AOUT_CHAN_RIGHT)) ) return "Mono"; else if ( p_format->i_original_channels & AOUT_CHAN_LEFT ) return "Left"; return "Right"; case AOUT_CHAN_LEFT | AOUT_CHAN_RIGHT: if ( p_format->i_original_channels & AOUT_CHAN_REVERSESTEREO ) { if ( p_format->i_original_channels & AOUT_CHAN_DOLBYSTEREO ) return "Dolby/Reverse"; return "Stereo/Reverse"; } else { if ( p_format->i_original_channels & AOUT_CHAN_DOLBYSTEREO ) return "Dolby"; else if ( p_format->i_original_channels & AOUT_CHAN_DUALMONO ) return "Dual-mono"; else if ( p_format->i_original_channels == AOUT_CHAN_CENTER ) return "Stereo/Mono"; else if ( !(p_format->i_original_channels & AOUT_CHAN_RIGHT) ) return "Stereo/Left"; else if ( !(p_format->i_original_channels & AOUT_CHAN_LEFT) ) return "Stereo/Right"; return "Stereo"; } case AOUT_CHAN_LEFT | AOUT_CHAN_RIGHT | AOUT_CHAN_CENTER: return "3F"; case AOUT_CHAN_LEFT | AOUT_CHAN_RIGHT | AOUT_CHAN_REARCENTER: return "2F1R"; case AOUT_CHAN_LEFT | AOUT_CHAN_RIGHT | AOUT_CHAN_CENTER | AOUT_CHAN_REARCENTER: return "3F1R"; case AOUT_CHAN_LEFT | AOUT_CHAN_RIGHT | AOUT_CHAN_REARLEFT | AOUT_CHAN_REARRIGHT: return "2F2R"; case AOUT_CHAN_LEFT | AOUT_CHAN_RIGHT | AOUT_CHAN_CENTER | AOUT_CHAN_REARLEFT | AOUT_CHAN_REARRIGHT: return "3F2R"; case AOUT_CHAN_CENTER | AOUT_CHAN_LFE: if ( (p_format->i_original_channels & AOUT_CHAN_CENTER) || (p_format->i_original_channels & (AOUT_CHAN_LEFT | AOUT_CHAN_RIGHT)) ) return "Mono/LFE"; else if ( p_format->i_original_channels & AOUT_CHAN_LEFT ) return "Left/LFE"; return "Right/LFE"; case AOUT_CHAN_LEFT | AOUT_CHAN_RIGHT | AOUT_CHAN_LFE: if ( p_format->i_original_channels & AOUT_CHAN_DOLBYSTEREO ) return "Dolby/LFE"; else if ( p_format->i_original_channels & AOUT_CHAN_DUALMONO ) return "Dual-mono/LFE"; else if ( p_format->i_original_channels == AOUT_CHAN_CENTER ) return "Mono/LFE"; else if ( !(p_format->i_original_channels & AOUT_CHAN_RIGHT) ) return "Stereo/Left/LFE"; else if ( !(p_format->i_original_channels & AOUT_CHAN_LEFT) ) return "Stereo/Right/LFE"; return "Stereo/LFE"; case AOUT_CHAN_LEFT | AOUT_CHAN_RIGHT | AOUT_CHAN_CENTER | AOUT_CHAN_LFE: return "3F/LFE"; case AOUT_CHAN_LEFT | AOUT_CHAN_RIGHT | AOUT_CHAN_REARCENTER | AOUT_CHAN_LFE: return "2F1R/LFE"; case AOUT_CHAN_LEFT | AOUT_CHAN_RIGHT | AOUT_CHAN_CENTER | AOUT_CHAN_REARCENTER | AOUT_CHAN_LFE: return "3F1R/LFE"; case AOUT_CHAN_LEFT | AOUT_CHAN_RIGHT | AOUT_CHAN_REARLEFT | AOUT_CHAN_REARRIGHT | AOUT_CHAN_LFE: return "2F2R/LFE"; case AOUT_CHAN_LEFT | AOUT_CHAN_RIGHT | AOUT_CHAN_CENTER | AOUT_CHAN_REARLEFT | AOUT_CHAN_REARRIGHT | AOUT_CHAN_LFE: return "3F2R/LFE"; case AOUT_CHAN_LEFT | AOUT_CHAN_RIGHT | AOUT_CHAN_CENTER | AOUT_CHAN_REARLEFT | AOUT_CHAN_REARRIGHT | AOUT_CHAN_MIDDLELEFT | AOUT_CHAN_MIDDLERIGHT: return "3F2M2R"; case AOUT_CHAN_LEFT | AOUT_CHAN_RIGHT | AOUT_CHAN_CENTER | AOUT_CHAN_REARLEFT | AOUT_CHAN_REARRIGHT | AOUT_CHAN_MIDDLELEFT | AOUT_CHAN_MIDDLERIGHT | AOUT_CHAN_LFE: return "3F2M2R/LFE"; } return "ERROR"; } /***************************************************************************** * aout_FormatPrint : print a format in a human-readable form *****************************************************************************/ void aout_FormatPrint( aout_instance_t * p_aout, const char * psz_text, const audio_sample_format_t * p_format ) { msg_Dbg( p_aout, "%s '%4.4s' %d Hz %s frame=%d samples/%d bytes", psz_text, (char *)&p_format->i_format, p_format->i_rate, aout_FormatPrintChannels( p_format ), p_format->i_frame_length, p_format->i_bytes_per_frame ); } /***************************************************************************** * aout_FormatsPrint : print two formats in a human-readable form *****************************************************************************/ void aout_FormatsPrint( aout_instance_t * p_aout, const char * psz_text, const audio_sample_format_t * p_format1, const audio_sample_format_t * p_format2 ) { msg_Dbg( p_aout, "%s '%4.4s'->'%4.4s' %d Hz->%d Hz %s->%s", psz_text, (char *)&p_format1->i_format, (char *)&p_format2->i_format, p_format1->i_rate, p_format2->i_rate, aout_FormatPrintChannels( p_format1 ), aout_FormatPrintChannels( p_format2 ) ); } /* * FIFO management (internal) - please understand that solving race conditions * is _your_ job, ie. in the audio output you should own the mixer lock * before calling any of these functions. */ /***************************************************************************** * aout_FifoInit : initialize the members of a FIFO *****************************************************************************/ void aout_FifoInit( aout_instance_t * p_aout, aout_fifo_t * p_fifo, uint32_t i_rate ) { AOUT_ASSERT_FIFO_LOCKED; if( i_rate == 0 ) { msg_Err( p_aout, "initialising fifo with zero divider" ); } p_fifo->p_first = NULL; p_fifo->pp_last = &p_fifo->p_first; aout_DateInit( &p_fifo->end_date, i_rate ); } /***************************************************************************** * aout_FifoPush : push a packet into the FIFO *****************************************************************************/ void aout_FifoPush( aout_instance_t * p_aout, aout_fifo_t * p_fifo, aout_buffer_t * p_buffer ) { (void)p_aout; AOUT_ASSERT_FIFO_LOCKED; *p_fifo->pp_last = p_buffer; p_fifo->pp_last = &p_buffer->p_next; *p_fifo->pp_last = NULL; /* Enforce the continuity of the stream. */ if ( aout_DateGet( &p_fifo->end_date ) ) { p_buffer->start_date = aout_DateGet( &p_fifo->end_date ); p_buffer->end_date = aout_DateIncrement( &p_fifo->end_date, p_buffer->i_nb_samples ); } else { aout_DateSet( &p_fifo->end_date, p_buffer->end_date ); } } /***************************************************************************** * aout_FifoSet : set end_date and trash all buffers (because they aren't * properly dated) *****************************************************************************/ void aout_FifoSet( aout_instance_t * p_aout, aout_fifo_t * p_fifo, mtime_t date ) { aout_buffer_t * p_buffer; (void)p_aout; AOUT_ASSERT_FIFO_LOCKED; aout_DateSet( &p_fifo->end_date, date ); p_buffer = p_fifo->p_first; while ( p_buffer != NULL ) { aout_buffer_t * p_next = p_buffer->p_next; aout_BufferFree( p_buffer ); p_buffer = p_next; } p_fifo->p_first = NULL; p_fifo->pp_last = &p_fifo->p_first; } /***************************************************************************** * aout_FifoMoveDates : Move forwards or backwards all dates in the FIFO *****************************************************************************/ void aout_FifoMoveDates( aout_instance_t * p_aout, aout_fifo_t * p_fifo, mtime_t difference ) { aout_buffer_t * p_buffer; (void)p_aout; AOUT_ASSERT_FIFO_LOCKED; aout_DateMove( &p_fifo->end_date, difference ); p_buffer = p_fifo->p_first; while ( p_buffer != NULL ) { p_buffer->start_date += difference; p_buffer->end_date += difference; p_buffer = p_buffer->p_next; } } /***************************************************************************** * aout_FifoNextStart : return the current end_date *****************************************************************************/ mtime_t aout_FifoNextStart( aout_instance_t * p_aout, aout_fifo_t * p_fifo ) { (void)p_aout; AOUT_ASSERT_FIFO_LOCKED; return aout_DateGet( &p_fifo->end_date ); } /***************************************************************************** * aout_FifoFirstDate : return the playing date of the first buffer in the * FIFO *****************************************************************************/ mtime_t aout_FifoFirstDate( aout_instance_t * p_aout, aout_fifo_t * p_fifo ) { (void)p_aout; AOUT_ASSERT_FIFO_LOCKED; return p_fifo->p_first ? p_fifo->p_first->start_date : 0; } /***************************************************************************** * aout_FifoPop : get the next buffer out of the FIFO *****************************************************************************/ aout_buffer_t * aout_FifoPop( aout_instance_t * p_aout, aout_fifo_t * p_fifo ) { aout_buffer_t * p_buffer; (void)p_aout; AOUT_ASSERT_FIFO_LOCKED; p_buffer = p_fifo->p_first; if ( p_buffer == NULL ) return NULL; p_fifo->p_first = p_buffer->p_next; if ( p_fifo->p_first == NULL ) { p_fifo->pp_last = &p_fifo->p_first; } return p_buffer; } /***************************************************************************** * aout_FifoDestroy : destroy a FIFO and its buffers *****************************************************************************/ void aout_FifoDestroy( aout_instance_t * p_aout, aout_fifo_t * p_fifo ) { aout_buffer_t * p_buffer; (void)p_aout; AOUT_ASSERT_FIFO_LOCKED; p_buffer = p_fifo->p_first; while ( p_buffer != NULL ) { aout_buffer_t * p_next = p_buffer->p_next; aout_BufferFree( p_buffer ); p_buffer = p_next; } p_fifo->p_first = NULL; p_fifo->pp_last = &p_fifo->p_first; } /* * Date management (internal and external) */ /***************************************************************************** * aout_DateInit : set the divider of an audio_date_t *****************************************************************************/ void aout_DateInit( audio_date_t * p_date, uint32_t i_divider ) { p_date->date = 0; p_date->i_divider = i_divider; p_date->i_remainder = 0; } /***************************************************************************** * aout_DateSet : set the date of an audio_date_t *****************************************************************************/ void aout_DateSet( audio_date_t * p_date, mtime_t new_date ) { p_date->date = new_date; p_date->i_remainder = 0; } /***************************************************************************** * aout_DateMove : move forwards or backwards the date of an audio_date_t *****************************************************************************/ void aout_DateMove( audio_date_t * p_date, mtime_t difference ) { p_date->date += difference; } /***************************************************************************** * aout_DateGet : get the date of an audio_date_t *****************************************************************************/ mtime_t aout_DateGet( const audio_date_t * p_date ) { return p_date->date; } /***************************************************************************** * aout_DateIncrement : increment the date and return the result, taking * into account rounding errors *****************************************************************************/ mtime_t aout_DateIncrement( audio_date_t * p_date, uint32_t i_nb_samples ) { mtime_t i_dividend = (mtime_t)i_nb_samples * 1000000; p_date->date += i_dividend / p_date->i_divider; p_date->i_remainder += (int)(i_dividend % p_date->i_divider); if ( p_date->i_remainder >= p_date->i_divider ) { /* This is Bresenham algorithm. */ p_date->date++; p_date->i_remainder -= p_date->i_divider; } return p_date->date; } /***************************************************************************** * aout_CheckChannelReorder : Check if we need to do some channel re-ordering *****************************************************************************/ int aout_CheckChannelReorder( const uint32_t *pi_chan_order_in, const uint32_t *pi_chan_order_out, uint32_t i_channel_mask, int i_channels, int *pi_chan_table ) { bool b_chan_reorder = false; int i, j, k, l; if( i_channels > AOUT_CHAN_MAX ) return false; for( i = 0, j = 0; pi_chan_order_in[i]; i++ ) { if( !(i_channel_mask & pi_chan_order_in[i]) ) continue; for( k = 0, l = 0; pi_chan_order_in[i] != pi_chan_order_out[k]; k++ ) { if( i_channel_mask & pi_chan_order_out[k] ) l++; } pi_chan_table[j++] = l; } for( i = 0; i < i_channels; i++ ) { if( pi_chan_table[i] != i ) b_chan_reorder = true; } return b_chan_reorder; } /***************************************************************************** * aout_ChannelReorder : *****************************************************************************/ void aout_ChannelReorder( uint8_t *p_buf, int i_buffer, int i_channels, const int *pi_chan_table, int i_bits_per_sample ) { uint8_t p_tmp[AOUT_CHAN_MAX * 4]; int i, j; if( i_bits_per_sample == 8 ) { for( i = 0; i < i_buffer / i_channels; i++ ) { for( j = 0; j < i_channels; j++ ) { p_tmp[pi_chan_table[j]] = p_buf[j]; } memcpy( p_buf, p_tmp, i_channels ); p_buf += i_channels; } } else if( i_bits_per_sample == 16 ) { for( i = 0; i < i_buffer / i_channels / 2; i++ ) { for( j = 0; j < i_channels; j++ ) { p_tmp[2 * pi_chan_table[j]] = p_buf[2 * j]; p_tmp[2 * pi_chan_table[j] + 1] = p_buf[2 * j + 1]; } memcpy( p_buf, p_tmp, 2 * i_channels ); p_buf += 2 * i_channels; } } else if( i_bits_per_sample == 24 ) { for( i = 0; i < i_buffer / i_channels / 3; i++ ) { for( j = 0; j < i_channels; j++ ) { p_tmp[3 * pi_chan_table[j]] = p_buf[3 * j]; p_tmp[3 * pi_chan_table[j] + 1] = p_buf[3 * j + 1]; p_tmp[3 * pi_chan_table[j] + 2] = p_buf[3 * j + 2]; } memcpy( p_buf, p_tmp, 3 * i_channels ); p_buf += 3 * i_channels; } } else if( i_bits_per_sample == 32 ) { for( i = 0; i < i_buffer / i_channels / 4; i++ ) { for( j = 0; j < i_channels; j++ ) { p_tmp[4 * pi_chan_table[j]] = p_buf[4 * j]; p_tmp[4 * pi_chan_table[j] + 1] = p_buf[4 * j + 1]; p_tmp[4 * pi_chan_table[j] + 2] = p_buf[4 * j + 2]; p_tmp[4 * pi_chan_table[j] + 3] = p_buf[4 * j + 3]; } memcpy( p_buf, p_tmp, 4 * i_channels ); p_buf += 4 * i_channels; } } }