/*****************************************************************************
* common.c : audio output management of common data structures
*****************************************************************************
* Copyright (C) 2002-2007 the VideoLAN team
* $Id$
*
* Authors: Christophe Massiot <massiot@via.ecp.fr>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301, USA.
*****************************************************************************/
/*****************************************************************************
* Preamble
*****************************************************************************/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include <assert.h>
#include "vlc_common.h"
#include "vlc_aout.h"
#include "aout_internal.h"
/*
* Instances management (internal and external)
*/
#define AOUT_ASSERT_FIFO_LOCKED aout_assert_fifo_locked(p_aout, p_fifo)
static inline void aout_assert_fifo_locked( aout_instance_t * p_aout, aout_fifo_t * p_fifo )
{
#ifndef NDEBUG
if( p_fifo == &p_aout->output.fifo )
vlc_assert_locked( &p_aout->output_fifo_lock );
else
{
int i;
for( i = 0; i < p_aout->i_nb_inputs; i++ )
{
if( p_fifo == &p_aout->pp_inputs[i]->fifo)
{
vlc_assert_locked( &p_aout->input_fifos_lock );
break;
}
}
if( i == p_aout->i_nb_inputs )
vlc_assert_locked( &p_aout->mixer_lock );
}
#else
(void)p_aout;
(void)p_fifo;
#endif
}
/* Local functions */
static void aout_Destructor( vlc_object_t * p_this );
/*****************************************************************************
* aout_New: initialize aout structure
*****************************************************************************/
aout_instance_t * __aout_New( vlc_object_t * p_parent )
{
aout_instance_t * p_aout;
vlc_value_t val;
/* Allocate descriptor. */
p_aout = vlc_object_create( p_parent, VLC_OBJECT_AOUT );
if( p_aout == NULL )
{
return NULL;
}
/* Initialize members. */
vlc_mutex_init( &p_aout->input_fifos_lock );
vlc_mutex_init( &p_aout->mixer_lock );
vlc_mutex_init( &p_aout->output_fifo_lock );
p_aout->i_nb_inputs = 0;
p_aout->mixer.f_multiplier = 1.0;
p_aout->mixer.b_error = 1;
p_aout->output.b_error = 1;
p_aout->output.b_starving = 1;
var_Create( p_aout, "intf-change", VLC_VAR_BOOL );
val.b_bool = true;
var_Set( p_aout, "intf-change", val );
vlc_object_set_destructor( p_aout, aout_Destructor );
return p_aout;
}
/*****************************************************************************
* aout_Destructor: destroy aout structure
*****************************************************************************/
static void aout_Destructor( vlc_object_t * p_this )
{
aout_instance_t * p_aout = (aout_instance_t *)p_this;
vlc_mutex_destroy( &p_aout->input_fifos_lock );
vlc_mutex_destroy( &p_aout->mixer_lock );
vlc_mutex_destroy( &p_aout->output_fifo_lock );
}
/*
* Formats management (internal and external)
*/
/*****************************************************************************
* aout_FormatNbChannels : return the number of channels
*****************************************************************************/
unsigned int aout_FormatNbChannels( const audio_sample_format_t * p_format )
{
static const uint32_t pi_channels[] =
{ AOUT_CHAN_CENTER, AOUT_CHAN_LEFT, AOUT_CHAN_RIGHT,
AOUT_CHAN_REARCENTER, AOUT_CHAN_REARLEFT, AOUT_CHAN_REARRIGHT,
AOUT_CHAN_MIDDLELEFT, AOUT_CHAN_MIDDLERIGHT, AOUT_CHAN_LFE };
unsigned int i_nb = 0, i;
for ( i = 0; i < sizeof(pi_channels)/sizeof(uint32_t); i++ )
{
if ( p_format->i_physical_channels & pi_channels[i] ) i_nb++;
}
return i_nb;
}
/*****************************************************************************
* aout_BitsPerSample : get the number of bits per sample
*****************************************************************************/
unsigned int aout_BitsPerSample( vlc_fourcc_t i_format )
{
switch( i_format )
{
case VLC_FOURCC('u','8',' ',' '):
case VLC_FOURCC('s','8',' ',' '):
return 8;
case VLC_FOURCC('u','1','6','l'):
case VLC_FOURCC('s','1','6','l'):
case VLC_FOURCC('u','1','6','b'):
case VLC_FOURCC('s','1','6','b'):
return 16;
case VLC_FOURCC('u','2','4','l'):
case VLC_FOURCC('s','2','4','l'):
case VLC_FOURCC('u','2','4','b'):
case VLC_FOURCC('s','2','4','b'):
return 24;
case VLC_FOURCC('s','3','2','l'):
case VLC_FOURCC('s','3','2','b'):
case VLC_FOURCC('f','l','3','2'):
case VLC_FOURCC('f','i','3','2'):
return 32;
case VLC_FOURCC('f','l','6','4'):
return 64;
default:
/* For these formats the caller has to indicate the parameters
* by hand. */
return 0;
}
}
/*****************************************************************************
* aout_FormatPrepare : compute the number of bytes per frame & frame length
*****************************************************************************/
void aout_FormatPrepare( audio_sample_format_t * p_format )
{
p_format->i_bitspersample = aout_BitsPerSample( p_format->i_format );
if( p_format->i_bitspersample > 0 )
{
p_format->i_bytes_per_frame = ( p_format->i_bitspersample / 8 )
* aout_FormatNbChannels( p_format );
p_format->i_frame_length = 1;
}
}
/*****************************************************************************
* aout_FormatPrintChannels : print a channel in a human-readable form
*****************************************************************************/
const char * aout_FormatPrintChannels( const audio_sample_format_t * p_format )
{
switch ( p_format->i_physical_channels & AOUT_CHAN_PHYSMASK )
{
case AOUT_CHAN_CENTER:
if ( (p_format->i_original_channels & AOUT_CHAN_CENTER)
|| (p_format->i_original_channels
& (AOUT_CHAN_LEFT | AOUT_CHAN_RIGHT)) )
return "Mono";
else if ( p_format->i_original_channels & AOUT_CHAN_LEFT )
return "Left";
return "Right";
case AOUT_CHAN_LEFT | AOUT_CHAN_RIGHT:
if ( p_format->i_original_channels & AOUT_CHAN_REVERSESTEREO )
{
if ( p_format->i_original_channels & AOUT_CHAN_DOLBYSTEREO )
return "Dolby/Reverse";
return "Stereo/Reverse";
}
else
{
if ( p_format->i_original_channels & AOUT_CHAN_DOLBYSTEREO )
return "Dolby";
else if ( p_format->i_original_channels & AOUT_CHAN_DUALMONO )
return "Dual-mono";
else if ( p_format->i_original_channels == AOUT_CHAN_CENTER )
return "Stereo/Mono";
else if ( !(p_format->i_original_channels & AOUT_CHAN_RIGHT) )
return "Stereo/Left";
else if ( !(p_format->i_original_channels & AOUT_CHAN_LEFT) )
return "Stereo/Right";
return "Stereo";
}
case AOUT_CHAN_LEFT | AOUT_CHAN_RIGHT | AOUT_CHAN_CENTER:
return "3F";
case AOUT_CHAN_LEFT | AOUT_CHAN_RIGHT | AOUT_CHAN_REARCENTER:
return "2F1R";
case AOUT_CHAN_LEFT | AOUT_CHAN_RIGHT | AOUT_CHAN_CENTER
| AOUT_CHAN_REARCENTER:
return "3F1R";
case AOUT_CHAN_LEFT | AOUT_CHAN_RIGHT
| AOUT_CHAN_REARLEFT | AOUT_CHAN_REARRIGHT:
return "2F2R";
case AOUT_CHAN_LEFT | AOUT_CHAN_RIGHT | AOUT_CHAN_CENTER
| AOUT_CHAN_REARLEFT | AOUT_CHAN_REARRIGHT:
return "3F2R";
case AOUT_CHAN_CENTER | AOUT_CHAN_LFE:
if ( (p_format->i_original_channels & AOUT_CHAN_CENTER)
|| (p_format->i_original_channels
& (AOUT_CHAN_LEFT | AOUT_CHAN_RIGHT)) )
return "Mono/LFE";
else if ( p_format->i_original_channels & AOUT_CHAN_LEFT )
return "Left/LFE";
return "Right/LFE";
case AOUT_CHAN_LEFT | AOUT_CHAN_RIGHT | AOUT_CHAN_LFE:
if ( p_format->i_original_channels & AOUT_CHAN_DOLBYSTEREO )
return "Dolby/LFE";
else if ( p_format->i_original_channels & AOUT_CHAN_DUALMONO )
return "Dual-mono/LFE";
else if ( p_format->i_original_channels == AOUT_CHAN_CENTER )
return "Mono/LFE";
else if ( !(p_format->i_original_channels & AOUT_CHAN_RIGHT) )
return "Stereo/Left/LFE";
else if ( !(p_format->i_original_channels & AOUT_CHAN_LEFT) )
return "Stereo/Right/LFE";
return "Stereo/LFE";
case AOUT_CHAN_LEFT | AOUT_CHAN_RIGHT | AOUT_CHAN_CENTER | AOUT_CHAN_LFE:
return "3F/LFE";
case AOUT_CHAN_LEFT | AOUT_CHAN_RIGHT | AOUT_CHAN_REARCENTER
| AOUT_CHAN_LFE:
return "2F1R/LFE";
case AOUT_CHAN_LEFT | AOUT_CHAN_RIGHT | AOUT_CHAN_CENTER
| AOUT_CHAN_REARCENTER | AOUT_CHAN_LFE:
return "3F1R/LFE";
case AOUT_CHAN_LEFT | AOUT_CHAN_RIGHT
| AOUT_CHAN_REARLEFT | AOUT_CHAN_REARRIGHT | AOUT_CHAN_LFE:
return "2F2R/LFE";
case AOUT_CHAN_LEFT | AOUT_CHAN_RIGHT | AOUT_CHAN_CENTER
| AOUT_CHAN_REARLEFT | AOUT_CHAN_REARRIGHT | AOUT_CHAN_LFE:
return "3F2R/LFE";
case AOUT_CHAN_LEFT | AOUT_CHAN_RIGHT | AOUT_CHAN_CENTER
| AOUT_CHAN_REARLEFT | AOUT_CHAN_REARRIGHT | AOUT_CHAN_MIDDLELEFT
| AOUT_CHAN_MIDDLERIGHT:
return "3F2M2R";
case AOUT_CHAN_LEFT | AOUT_CHAN_RIGHT | AOUT_CHAN_CENTER
| AOUT_CHAN_REARLEFT | AOUT_CHAN_REARRIGHT | AOUT_CHAN_MIDDLELEFT
| AOUT_CHAN_MIDDLERIGHT | AOUT_CHAN_LFE:
return "3F2M2R/LFE";
}
return "ERROR";
}
/*****************************************************************************
* aout_FormatPrint : print a format in a human-readable form
*****************************************************************************/
void aout_FormatPrint( aout_instance_t * p_aout, const char * psz_text,
const audio_sample_format_t * p_format )
{
msg_Dbg( p_aout, "%s '%4.4s' %d Hz %s frame=%d samples/%d bytes", psz_text,
(char *)&p_format->i_format, p_format->i_rate,
aout_FormatPrintChannels( p_format ),
p_format->i_frame_length, p_format->i_bytes_per_frame );
}
/*****************************************************************************
* aout_FormatsPrint : print two formats in a human-readable form
*****************************************************************************/
void aout_FormatsPrint( aout_instance_t * p_aout, const char * psz_text,
const audio_sample_format_t * p_format1,
const audio_sample_format_t * p_format2 )
{
msg_Dbg( p_aout, "%s '%4.4s'->'%4.4s' %d Hz->%d Hz %s->%s",
psz_text,
(char *)&p_format1->i_format, (char *)&p_format2->i_format,
p_format1->i_rate, p_format2->i_rate,
aout_FormatPrintChannels( p_format1 ),
aout_FormatPrintChannels( p_format2 ) );
}
/*
* FIFO management (internal) - please understand that solving race conditions
* is _your_ job, ie. in the audio output you should own the mixer lock
* before calling any of these functions.
*/
/*****************************************************************************
* aout_FifoInit : initialize the members of a FIFO
*****************************************************************************/
void aout_FifoInit( aout_instance_t * p_aout, aout_fifo_t * p_fifo,
uint32_t i_rate )
{
AOUT_ASSERT_FIFO_LOCKED;
if( i_rate == 0 )
{
msg_Err( p_aout, "initialising fifo with zero divider" );
}
p_fifo->p_first = NULL;
p_fifo->pp_last = &p_fifo->p_first;
aout_DateInit( &p_fifo->end_date, i_rate );
}
/*****************************************************************************
* aout_FifoPush : push a packet into the FIFO
*****************************************************************************/
void aout_FifoPush( aout_instance_t * p_aout, aout_fifo_t * p_fifo,
aout_buffer_t * p_buffer )
{
(void)p_aout;
AOUT_ASSERT_FIFO_LOCKED;
*p_fifo->pp_last = p_buffer;
p_fifo->pp_last = &p_buffer->p_next;
*p_fifo->pp_last = NULL;
/* Enforce the continuity of the stream. */
if ( aout_DateGet( &p_fifo->end_date ) )
{
p_buffer->start_date = aout_DateGet( &p_fifo->end_date );
p_buffer->end_date = aout_DateIncrement( &p_fifo->end_date,
p_buffer->i_nb_samples );
}
else
{
aout_DateSet( &p_fifo->end_date, p_buffer->end_date );
}
}
/*****************************************************************************
* aout_FifoSet : set end_date and trash all buffers (because they aren't
* properly dated)
*****************************************************************************/
void aout_FifoSet( aout_instance_t * p_aout, aout_fifo_t * p_fifo,
mtime_t date )
{
aout_buffer_t * p_buffer;
(void)p_aout;
AOUT_ASSERT_FIFO_LOCKED;
aout_DateSet( &p_fifo->end_date, date );
p_buffer = p_fifo->p_first;
while ( p_buffer != NULL )
{
aout_buffer_t * p_next = p_buffer->p_next;
aout_BufferFree( p_buffer );
p_buffer = p_next;
}
p_fifo->p_first = NULL;
p_fifo->pp_last = &p_fifo->p_first;
}
/*****************************************************************************
* aout_FifoMoveDates : Move forwards or backwards all dates in the FIFO
*****************************************************************************/
void aout_FifoMoveDates( aout_instance_t * p_aout, aout_fifo_t * p_fifo,
mtime_t difference )
{
aout_buffer_t * p_buffer;
(void)p_aout;
AOUT_ASSERT_FIFO_LOCKED;
aout_DateMove( &p_fifo->end_date, difference );
p_buffer = p_fifo->p_first;
while ( p_buffer != NULL )
{
p_buffer->start_date += difference;
p_buffer->end_date += difference;
p_buffer = p_buffer->p_next;
}
}
/*****************************************************************************
* aout_FifoNextStart : return the current end_date
*****************************************************************************/
mtime_t aout_FifoNextStart( aout_instance_t * p_aout, aout_fifo_t * p_fifo )
{
(void)p_aout;
AOUT_ASSERT_FIFO_LOCKED;
return aout_DateGet( &p_fifo->end_date );
}
/*****************************************************************************
* aout_FifoFirstDate : return the playing date of the first buffer in the
* FIFO
*****************************************************************************/
mtime_t aout_FifoFirstDate( aout_instance_t * p_aout, aout_fifo_t * p_fifo )
{
(void)p_aout;
AOUT_ASSERT_FIFO_LOCKED;
return p_fifo->p_first ? p_fifo->p_first->start_date : 0;
}
/*****************************************************************************
* aout_FifoPop : get the next buffer out of the FIFO
*****************************************************************************/
aout_buffer_t * aout_FifoPop( aout_instance_t * p_aout, aout_fifo_t * p_fifo )
{
aout_buffer_t * p_buffer;
(void)p_aout;
AOUT_ASSERT_FIFO_LOCKED;
p_buffer = p_fifo->p_first;
if ( p_buffer == NULL ) return NULL;
p_fifo->p_first = p_buffer->p_next;
if ( p_fifo->p_first == NULL )
{
p_fifo->pp_last = &p_fifo->p_first;
}
return p_buffer;
}
/*****************************************************************************
* aout_FifoDestroy : destroy a FIFO and its buffers
*****************************************************************************/
void aout_FifoDestroy( aout_instance_t * p_aout, aout_fifo_t * p_fifo )
{
aout_buffer_t * p_buffer;
(void)p_aout;
AOUT_ASSERT_FIFO_LOCKED;
p_buffer = p_fifo->p_first;
while ( p_buffer != NULL )
{
aout_buffer_t * p_next = p_buffer->p_next;
aout_BufferFree( p_buffer );
p_buffer = p_next;
}
p_fifo->p_first = NULL;
p_fifo->pp_last = &p_fifo->p_first;
}
/*
* Date management (internal and external)
*/
/*****************************************************************************
* aout_DateInit : set the divider of an audio_date_t
*****************************************************************************/
void aout_DateInit( audio_date_t * p_date, uint32_t i_divider )
{
p_date->date = 0;
p_date->i_divider = i_divider;
p_date->i_remainder = 0;
}
/*****************************************************************************
* aout_DateSet : set the date of an audio_date_t
*****************************************************************************/
void aout_DateSet( audio_date_t * p_date, mtime_t new_date )
{
p_date->date = new_date;
p_date->i_remainder = 0;
}
/*****************************************************************************
* aout_DateMove : move forwards or backwards the date of an audio_date_t
*****************************************************************************/
void aout_DateMove( audio_date_t * p_date, mtime_t difference )
{
p_date->date += difference;
}
/*****************************************************************************
* aout_DateGet : get the date of an audio_date_t
*****************************************************************************/
mtime_t aout_DateGet( const audio_date_t * p_date )
{
return p_date->date;
}
/*****************************************************************************
* aout_DateIncrement : increment the date and return the result, taking
* into account rounding errors
*****************************************************************************/
mtime_t aout_DateIncrement( audio_date_t * p_date, uint32_t i_nb_samples )
{
mtime_t i_dividend = (mtime_t)i_nb_samples * 1000000;
p_date->date += i_dividend / p_date->i_divider;
p_date->i_remainder += (int)(i_dividend % p_date->i_divider);
if ( p_date->i_remainder >= p_date->i_divider )
{
/* This is Bresenham algorithm. */
p_date->date++;
p_date->i_remainder -= p_date->i_divider;
}
return p_date->date;
}
/*****************************************************************************
* aout_CheckChannelReorder : Check if we need to do some channel re-ordering
*****************************************************************************/
int aout_CheckChannelReorder( const uint32_t *pi_chan_order_in,
const uint32_t *pi_chan_order_out,
uint32_t i_channel_mask,
int i_channels, int *pi_chan_table )
{
bool b_chan_reorder = false;
int i, j, k, l;
if( i_channels > AOUT_CHAN_MAX ) return false;
for( i = 0, j = 0; pi_chan_order_in[i]; i++ )
{
if( !(i_channel_mask & pi_chan_order_in[i]) ) continue;
for( k = 0, l = 0; pi_chan_order_in[i] != pi_chan_order_out[k]; k++ )
{
if( i_channel_mask & pi_chan_order_out[k] ) l++;
}
pi_chan_table[j++] = l;
}
for( i = 0; i < i_channels; i++ )
{
if( pi_chan_table[i] != i ) b_chan_reorder = true;
}
return b_chan_reorder;
}
/*****************************************************************************
* aout_ChannelReorder :
*****************************************************************************/
void aout_ChannelReorder( uint8_t *p_buf, int i_buffer,
int i_channels, const int *pi_chan_table,
int i_bits_per_sample )
{
uint8_t p_tmp[AOUT_CHAN_MAX * 4];
int i, j;
if( i_bits_per_sample == 8 )
{
for( i = 0; i < i_buffer / i_channels; i++ )
{
for( j = 0; j < i_channels; j++ )
{
p_tmp[pi_chan_table[j]] = p_buf[j];
}
memcpy( p_buf, p_tmp, i_channels );
p_buf += i_channels;
}
}
else if( i_bits_per_sample == 16 )
{
for( i = 0; i < i_buffer / i_channels / 2; i++ )
{
for( j = 0; j < i_channels; j++ )
{
p_tmp[2 * pi_chan_table[j]] = p_buf[2 * j];
p_tmp[2 * pi_chan_table[j] + 1] = p_buf[2 * j + 1];
}
memcpy( p_buf, p_tmp, 2 * i_channels );
p_buf += 2 * i_channels;
}
}
else if( i_bits_per_sample == 24 )
{
for( i = 0; i < i_buffer / i_channels / 3; i++ )
{
for( j = 0; j < i_channels; j++ )
{
p_tmp[3 * pi_chan_table[j]] = p_buf[3 * j];
p_tmp[3 * pi_chan_table[j] + 1] = p_buf[3 * j + 1];
p_tmp[3 * pi_chan_table[j] + 2] = p_buf[3 * j + 2];
}
memcpy( p_buf, p_tmp, 3 * i_channels );
p_buf += 3 * i_channels;
}
}
else if( i_bits_per_sample == 32 )
{
for( i = 0; i < i_buffer / i_channels / 4; i++ )
{
for( j = 0; j < i_channels; j++ )
{
p_tmp[4 * pi_chan_table[j]] = p_buf[4 * j];
p_tmp[4 * pi_chan_table[j] + 1] = p_buf[4 * j + 1];
p_tmp[4 * pi_chan_table[j] + 2] = p_buf[4 * j + 2];
p_tmp[4 * pi_chan_table[j] + 3] = p_buf[4 * j + 3];
}
memcpy( p_buf, p_tmp, 4 * i_channels );
p_buf += 4 * i_channels;
}
}
}